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a b s t r a c t

This paper presents the results of an extensive experimental analysis of the fractal properties of fatigue
crack rough surfaces. The analysis of the power-spectral density functions of profilometric traces shows a
predominance of the box fractal dimension D = 1.2. This result leads to a particularization of the fatigue
crack growth equation based on fractality proposed by the last two authors which is very close to the
generalized Frost–Dugdale equation proposed by the first three authors. The two approaches, albeit based
on different initial modelling assumptions, are both very effective in predicting the crack growth rate of
short cracks.

� 2015 Published by Elsevier Ltd.

1. Introduction

The breakdown of physical similitude in fatigue crack growth
has been pioneeringly revealed in the early work of Barenblatt
and Botvina [1]. Since then, several attempts have been made in
order to understand the impact of this incomplete similarity on
the Paris and Wöhler representations of fatigue. Experimental con-
firmation of size-scale effects has been reported by Ritchie [2] and
generalized theories of fatigue based on dimensional analysis and
incomplete similarity have been proposed [3–6] to interpret this
anomalous phenomenon. Using these concepts, a dependency of
the Paris’ law on the grain size has also been put into evidence
by Plekhov et al. [7].

Supported by these dimensional analysis considerations, a new
fatigue crack growth theory based on fractality of crack profiles has
been developed [3,6,8–12] to interpret the (experimentally
evidenced) anomalous crack growth rate of short cracks and
crack-size effects on the fatigue threshold, facts that were not fully
explained by previous theories. At the same time and indepen-
dently, Jones and coworkers [13–17] have shown that the anoma-
lous crack growth rate of short cracks can also be captured using a
generalization of the pioneering Frost–Dugdale equation [18]. It
has also been shown [19] that the NASGRO crack growth equation
with the constants determined form tests on long cracks can be

used to represent the growth of short cracks if closure effects are
set to near zero and the threshold is set to a very small value.

In the present contribution, an extensive experimental analysis
of the fractal properties of fatigue crack rough surfaces is
presented.

Given the fact proven in the previous publications that the gen-
eralized fatigue crack growth equation based on fractality [8] and
the generalized Frost–Dugdale equation [14] are both viable
methods to model and simulate the anomalous fatigue behaviour
of short cracks, in this study we attempt at applying the two
approaches to a set of experimental data whose fatigue curves
are known and from which it is possible to compute the profile
fractal dimension, a key parameter in the fractal model. Analysis
of the power-spectral density functions of profilometric traces
shows a predominance of the fractal dimension D = 1.2. This result
leads to a particularization of the fatigue crack growth equation
based on fractality which is very close to the generalized
Frost–Dugdale equation, thus explaining why the two approaches,
albeit based on different initial modelling assumptions, are both
very effective in predicting the crack growth rate of short cracks.
Finally, by analogy with the generalized Frost–Dugdale equation,
a generalization of the fractal approach in case of crack closure is
proposed.

2. Crack growth equations

The recent state-of-the-art review of fatigue crack growth and
damage tolerance [19] revealed that the growth of both long and
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short cracks could be represented by the NASGRO crack growth
equation [20], viz:

da=dN ¼ DDKðm�pÞ
eff ðDKeff � DKeff ;thrÞp=ð1� Kmax=AÞq ð1Þ

where D is a constant,DKeff is an effective stress intensity factor and
the terms DKthr and A are best interpreted as parameters chosen so
as to fit the measured da/dN versus DK data. The term DKeff is gen-
erally expressed in the form

DKeff ¼ Kmax � Kop ð2Þ
where Kop is defined as the value of the stress intensity factor at
which the crack first opens. A range of formulae for determining
Kop have been suggested in the related literature. However, the
most widely used formulae for Kop was proposed by Newman
[21]. This formulation is used in the crack growth computer pro-
grams FASTRAN, NASGRO and AFGROW. It was also shown that,
as first suggested by McEvily et al. [22], the crack opening stress
intensity factor Kop decays to Kmin as the crack length reduces.
One way to achieve this is via the McEvily et al. [22] formulation:

DKop ¼ ð1� e�kaÞDKopl ð3Þ
where DKopl is the long crack value of DKop (=Kop � Kmin) and k is a
material dependent constant.

Jones [19] and Jones et al. [23] have shown that crack growth in
a large cross-section of aerospace and rail materials can be cap-
tured by Eq. (1) with m = p and q = p/2 and that in such cases p
often takes a value that is approximately 2. Jones et al. [24] have
also shown that this approach applies to Mode I, Mode II and
Mixed Mode I/II disbonding in adhesively bonded structures.

On the other hand Jones et al. [13–17] have shown that the
crack growth can also be captured using the Generalized Frost–
Dugdale equation, viz:

da=dN ¼ C�að1�c=2ÞðDjÞc � ðda=dNÞ0 ð4Þ
where Dj is a crack driving force

Dj ¼ DKpðKmaxÞð1�pÞ ð5Þ
Here p, c, which in most instances is approximately equal to 3, and
C* are constants, and the term (da/dN)0 reflects both the fatigue
threshold and the nature of the notch (defect/discontinuity) from
which cracking initiates.

It was also shown that, in numerous instances, crack growth can
be captured equally well by using Eqs. (1) or (4). Figs. 1–5 illustrate
this by presenting crack growth data for 7050-T7451 and the MC
and MB wheel steels replotted as per Eqs. (1) and (4). This phe-
nomenon is also seen by comparing the crack growth representa-
tions presented in Jones et al. [25], which presents a crack
growth data for a range of materials expressed as per Eq. (1), and
by Jones et al. [17], which presents crack growth data for a range
of materials expressed as per Eq. (4).

3. Fatigue crack growth of fractal cracks

Having established that the Generalized Frost–Dugdale equa-
tion and the Nasgro equation can effectively be used to describe
the phenomenon of fatigue crack growth over a wide range of crack
sizes, let us now examine the fractal representation of cracks. Let
us consider a simple test such that the crack grows in pure Mode
I, i.e. straight ahead, as per Fig. 6.

In this case the near tip stress field is proportional to r�1/2,
where r is the radial distance from the crack tip.

Now consider the case when the crack surface is rough and
roughness is modelled as a fractal, as motivated by micromechan-
ical considerations and molecular dynamics simulations, see Figs. 7
and 8.

In this case if the crack has a fractal dimension D (1 < D < 2),
then the near crack-tip stress field takes the form [27–29]

r / rðD�2Þ=2 ð6Þ
so that the nature of the near tip stress field is fundamentally chan-
ged and no longer has the classical linear elastic fracture mechanics
(LEFM) 1/

p
r singularity.

The crack tip stress field only equates to the classical linear elas-
tic fracture mechanics (LEFM) solution when the crack profile is a
line in Euclidean space and thus has a fractal dimension D = 1. In
all other cases the near tip stress field differs from the classical linear
elastic fracture mechanics solution. In such cases, Spagnoli [3] and
then Paggi and Carpinteri [8] have shown that crack growth depends
both on the stress intensity factor K and the crack length viz:

da=dN ¼ C�=Dað1�DÞð1þm=2ÞðDKÞm ð7Þ
where m and C* are constants. This law is formally identical to the
classical Paris law except that the coefficient multiplying the
stress-intensity factor range is now dependent on the crack length
a, whereas in the Paris law [30,31] it was assumed to be a material
constant. At this stage it should be noted that Bouchaud [32] has
shown that for small cracks the fractal dimension D is slightly vary-
ing and is about 1.2 in several natural examples. This finding was
substantiated by Mandelbrot [33].

Frost and Dugdale [34] were the first to note that for many
materials the crack growth rate is often (approximately) propor-
tional to the cube of the stress amplitude (Dr)3. This has been con-
firmed by a range of investigations, viz: Frost et al. [35], Barter et al.
[36], Molent et al. [37], Tsouvalis et al. [38], Jones et al. [17], and as
a result is now adopted in the Royal Australian Air Force (RAAF)
Structural Assessment Manual, Main [39], the RAAF P3C (Orion)
repair assessment manual, Duthie and Matricciani [40] and Ayling
et al. [41] and the Association of State Highway and Officials [42].

In addition to the assumption of cubic stress dependency, if we
can also experimentally validate that D in Eq. (7) is approximately
equal to 1.2, then Eq. (7) yields

da=dN ¼ Ca�1=2ðDKÞ3 ð8Þ
which is a subset of the Generalized Frost–Dugdale equation, viz:

da=dN ¼ C�a�1=2½DKpðKmaxÞð1�pÞ�3 � ðda=dNÞ0 ð9Þ

Fig. 1. Comparison of the various da/dN versus DK test data for AA7050-T7451,
from Jones et al. [25].
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