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A B S T R A C T

The Hunt and Crossley model has been demonstrated to give accurate predictions of contact force generated by
the impact of a solid object. The simulated contact force values have been demonstrated to match closely with
experimental results as reported in the literature. However, derivation of the expression for finding the value of
the damping coefficient has never been presented. The writing of this paper was motivated by the need to fill in
the important knowledge gap.

1. Introduction

This paper is relevant to analysis of impact actions by falling or
moving objects in the context of sports [1–3], vehicular accidents
[4–7], windborne debris [8] or hail [9]. The focus of interest is in the
estimation of the contact force (Fc) which is the controlling parameter
for localised actions of the impact causing denting, crushing or per-
foration of the surface of the target [10].

Accurate simulation of the contact force relies on the choice of the
adopted contact law as well as the associated input parameters. Hunt
and Crossley model which is non-linear visco-elastically behaved as
depicted in Fig. 1 and represented by Eq. (1), is based on the use of non-
linear damper in conjunction with the Hertzian spring [11–13]. The
dynamic compressive stiffness K, non-linear power exponent n, and
damping coefficient D are parameters characterizing the conditions at
contact. The Hunt & Crossley model features the use of three coeffi-
cients: K, n and D to fully define the transient force at point of contact
between the impactor object and the surface of the target as function of
the relative displacement and velocity of the two objects. These para-
meter values need to be calibrated against experimental measurements
in order that real behaviour at contact is represented accurately.
However, uncertainties over the value of these coefficients have always
been an issue given the difficulties to have values of all three coeffi-
cients calibrated to achieve the best match with experimental mea-
surements. The issues have been circumvented by the use of a closed
form expression which provides prediction of the value of D for any
given values of K, n and coefficient of restitution Ce (the 3rd item on the
list can be inferred from measurements taken from an impact

experiment). Given this new closed form expression only two coeffi-
cients (K and n) need be obtained by calibration. This new development
is instrumental in having design charts drawn for determining the value
of the contact force for the whole range of scenarios of storm debris [8]
and hail [9] but no presentation of the basis of the adopted closed form
relationship can be found in the literature. This paper presents for the
first time the formal derivation for this important closed form expres-
sion along with an illustration of its use. Contact force associated with
large indentation and high energy dissipation can be predicted by the
adopted model [14,15].

= +F Kδ Dδ δ̇c
n n (1)

where δ = −x x( )i j is the indentation of the impactor into the surface of
the target (in which xi is the movements of the impactor and xj is the
displacements of the target); = −δ v v˙ ( )i j is the indentation velocity (in
which vi and vj are velocities of impactor and target at any time in the
course of the impact).

Solution for the damping coefficient D forming part of the Hunt and
Crossley model has been interpreted in many different ways for char-
acterizing energy losses that can occur in the course of an impact
[14,16–21]. The value of D depends on both the material properties of
the impactor object and the intensity of impact. Eq. (2), which is based
on the simplified assumption of linear visco-elastic behaviour at contact
(where n is equal to 1.0), is applicable to scenarios where the area of
contact is relatively small compared with the dimensions of the im-
pactor object [22–25]. Flores et al. [26] proposed an alternative for-
mula for determining the value of D as represented by Eq. (3) which
fixed the value of n at 1.5 as per Hertz law [27–37].

https://doi.org/10.1016/j.ijimpeng.2018.07.007
Received 21 December 2017; Received in revised form 29 May 2018; Accepted 11 July 2018

⁎ Corresponding author.
E-mail addresses: jingslinks@gzhu.edu.cn (J. Sun), ntkl@unimelb.edu.au (N. Lam), lihzhang@unimelb.edu.au (L. Zhang), druan@swin.edu.au (D. Ruan),

egad@swin.edu.au (E. Gad).

International Journal of Impact Engineering 121 (2018) 151–156

0734-743X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0734743X
https://www.elsevier.com/locate/ijimpeng
https://doi.org/10.1016/j.ijimpeng.2018.07.007
https://doi.org/10.1016/j.ijimpeng.2018.07.007
mailto:jingslinks@gzhu.edu.cn
mailto:ntkl@unimelb.edu.au
mailto:lihzhang@unimelb.edu.au
mailto:druan@swin.edu.au
mailto:egad@swin.edu.au
https://doi.org/10.1016/j.ijimpeng.2018.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijimpeng.2018.07.007&domain=pdf


⎜ ⎟= ⎛
⎝

− ⎞
⎠ −

D C
C

K
δ

3
2

1
˙

e

e ( ) (2)

⎜ ⎟= ⎛
⎝

− ⎞
⎠ −

D C
C

K
δ

8
5

1
˙

e

e ( ) (3)

= −
+

−
C δ

δ
where

˙
˙e

( )

( ) (4)

where = −− − −δ v v˙ ( )i j
( ) ( ) ( ) and = −+ + +δ v v˙ ( )i j

( ) ( ) ( ) are indentation velo-
cities immediately prior or following the impact; vi (−) and vj (−) are the
initial velocities of the impactor and the target immediately prior to the
occurrence of impact; vi (+) and vj (+) are the respective velocities im-
mediately following the impact.

In summary, the literature has presented solutions for D for the
special cases of n=1.0 and 1.5. However, the coefficient n is not fixed
at a constant value. Instead, it may take any value within the range: 1–2
depending on the condition of the impact and the compressive prop-
erties of the impacting objects [8,38,39]. The value to adopt can be
determined by calibration to achieve good match of the modelled
contact force with experimental measurements. Turning n from a con-
stant into a variable will result in more realistic prediction of energy
dissipation in an impact scenario. The generalized solution for D for any
given value of n as described in Eq. (5) has been adopted for simulating
contact force as per the Hunt and Crossley model across many impact
scenarios involving a range of spherical impactor objects [10], wind-
borne debris specimens [8], and hail specimens [9,38,40]. However,
the theoretical basis of the introduced relationship has never been ex-
plained in the literature. Details of the formal derivation for the ex-
pression are presented herein in Section 2 through Section 5 of this
article. The writing of this paper was motivated by the need to present
the theoretical derivation in a comprehensive manner in order to pro-
vide confidence in its usages.
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Essentially, the purpose of the closed-form expression of Eq. (5) is to
determine the value of the coefficient D once the value of the other two

coefficients: K and n are known. The construction of the contact force
model as depicted in Fig. 1 based on the governing equation of the Hunt
and Crossley model of Eq. (1) is hence expedited. Eq. (5) is also con-
sistent with the previously published expressions (of Eqs. (2) and (3))
that have been derived for the special cases where n=1.0 and n=1.5
for the generalized solution for D.

2. Derivation strategy

In the Hunt and Crossley model (refer Eq. (1)), assume all energy
losses (ΔEloss) occurring on the impact is taken by the viscous damper
(∮ Dδ δdδ˙n ). The relationship can be build up as in Eq. (6).

∮=E Dδ δdδΔ ˙n
loss (6)

Deriving the generalized solution for D involves a 3 step procedure
as depicted in Fig. 2 and illustrated in Sections 3–5.

3. Total amount of energy loss during the impact process (ΔEloss)

There are two phases in the course of an impact action as presented
in Fig. 3: the compression phase and restitution phase. The compression
phase commences when two objects (with masses mi and mj) come into
contact at time t (−), and terminates when the impacting objects travel
with common velocity (V) reaching maximum indentation (δm) at time t
(m); the restitution phase commences as soon as the compression phase
comes to an end, and terminates once the two colliding objects separate
from each other at time t (+). The loss of energy for the entire impact
process has to include the amount of energy dissipated for both the
compression phase and the restitution phase.

Considering the condition of equal energy and equal momentum at
the onset of the compression phase (t (−)) and the termination of the
restitution phase (t (+)), the following expressions are obtained:
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Submitting Eq. (9) into Eq. (7) results in the following expression:
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2
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(10)

The total amount of energy loss occurring on impact as represented
by Eq. (10) can be simplified further into Eq. (11) by considering the

Nomenclature

i, j impactor, target
mi, mj, m impactor mass, target mass, equivalent mass
xi, xj displacement of impactor or target
vi, vj, V velocity of impactor or target, common velocity
vi (-), vj (-) initial impact velocity of impactor or target
vi (+), vj (+) separation velocity of impactor or target
δ, δ (-), δmindentation, initial indentation, maximum indentation

− +δ δ δ˙ , ˙ , ˙( ) ( ) indentation velocity, initial indentation velocity, se-
paration indentation velocity

δ̈ indentation acceleration
t (-), t (m), t (+) time of initial contact, time of maximum indentation,

time of separation
Ce coefficient of restitution
Fc contact force
n non-linear power exponent
K dynamic compressive stiffness
k equivalent stiffness
D damping coefficient
c equivalent damping coefficient
ζ damping ratio
ω radial frequency
ωd damped radial frequency
ΔEloss total amount of energy loss occurring on impact

Fig. 1. Hunt and Crossley contact model.
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