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A B S T R A C T

The problem of a rigid projectile with the shape of an ovoid of Rankine penetrating an incompressible
elastic-perfectly-plastic target is used as an example to study the dependence of the drag force F on the
penetration velocity V. The phenomenological functional form of the contact pressure P proposed by Hill
(1980) during World War II, the analytical solution in Yarin et al. (1995), the numerical simulations in
Rosenberg and Dekel (2009), as well as new numerical simulations in this work all consistently reveal
the importance of a physical flow field in the target material. Below a critical value Vs of V, the drag force
F is constant. The critical value Vs determines the onset of separation of the target material from the pro-
jectile’s surface. Axial inertia being converted into radial inertia in the target near the projectile’s tip controls
the physics of the separation process and the strong dependence of F on V for V > Vs. Cavity expansion
models based on cylindrical or spherical flow fields miss the essential physics of this separation phe-
nomenon and are incorrect when target inertia is important. Also, the numerical simulations indicate
that the constant value of the drag force for V < Vs depends on the tip shape, which cannot be accurate-
ly predicted by cavity expansion models. Since cavity expansion models cannot accurately predict results
of the simplest problem of a rigid projectile penetrating an incompressible elastic-perfectly-plastic target,
it should not be assumed that these models are accurate for general target materials (which include com-
pressibility, hardening and porosity), even though the models are simple to use.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Penetration mechanics has been of interest to engineers for a
very long time. Comprehensive reviews of this subject with many
references to previous work can be found in Refs. [1,2]. Also, a large
amount of experimental data has been collected in Ref. [3]. Spe-
cifically, it is noted that static solutions for the pressure required
to expand spherical and cylindrical cavities in an infinite ductile
material were developed in Ref. [4], and Hopkins [5] developed a
dynamic solution for expansion of a spherical cavity into an elastic-
plastic material. These analytical solutions assume that the target
material is incompressible, and Hill [6] included compressibility for
expansion of a spherical shell.

Fig. 1 shows a sketch of a projectile of length L and tail radius
R, which is moving in the negative ez direction at velocity V. The
surface of the projectile is defined by the radial position
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where z is the axial coordinate relative to a fixed point and the
location and velocity of the projectile’s tip are given by
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with a superposed (•) denoting time differentiation. Also, ξs char-
acterizes the axial location of the circle where the target material
separates from the projectile’s surface and ξL locates the projectile’s
tail. Hill [7] described research on penetration mechanics that was
conducted during World War II. In particular, this work focused on
the relationship between the shape of the projectile’s tip and the
cavitation phenomena when the target material separates from the
projectile’s surface closer to its tip than to its tail, causing the radius
of the cavity to be larger than that of projectile’s tail.

Specifically, Hill [7] proposed a phenomenological expression for
the contact pressure P applied by the target on the projectile’s surface
of the form

P P Y P V= − ⋅ = +( )n Tn 1 2
2ρ , (3)

where {P1, P2} are given by
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In these expressions, P1 is a positive dimensionless constant con-
trolling the static resistance to penetration, Y is the constant uniaxial
yield stress in the target, k is a positive dimensionless constant and
ρ is the density of the target. Both of the constants {P1, k} have to be
determined empirically. Also,n is theunit outwardnormal to thepro-
jectile’s surface and T is the stress tensor in the target. Using these
expressions, the drag force F applied by the target on the projectile
in the positive ez direction due to Eq. (3) is given by (e.g., Ref. [8])
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with the functions {F1, F2} having the forms
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In these expressions, use has been made of Hill’s [7] assumptions
that the term ˆ ˆr dr dξ ξ ξ( ) ( ){ } vanishes at the projectile’s tip and tail
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In particular, it is noted that if separation occurs at the projectile’s
tail then

F F R P Y FL L= = =( ) ( )1
2

1 2 0ξ π ξ, , (8)

which indicates that the drag force is constant as long as the target
material remains in contact with the projectile’s surface until it sepa-
rates from its tail.

Hill [7] assumed that the target material separates from the
projectile’s surface at the location of the projectile’s bourrelet when
the penetration velocity V attains the critical value Vs. In particu-
lar, he developed an expression [7, eq. 2.4] for the value of Vs which
depended on an empirical constant k/n, with n characterizing the
curvature of the projectile’s surface at the separation curve. More-
over, he stated that as V increases beyond Vs the location of this
separation moves progressively away from the bourrelet (towards
the projectile’s tip). Since the value of F2 in Eq. (6) is non-negative,
it follows that the drag force transitions from being constant for V <Vs

to being an increasing function of velocity for V > Vs. Thus, the phe-
nomenological forms (3) and (4) for contact pressure proposed by
Hill [7] qualitatively predict the physical relationship between target
inertia, separation and the dependence of the drag force on pene-
tration velocity. It is also noted that Hill [7] studied projectile’s with
conical, spherical and ogival tip shapes and concluded that sepa-
ration should occur at all velocities V for projectiles with spherical
and conical shaped tips and Vs is finite for ogival shaped tips. In con-
trast, the numerical simulations in Ref. [9] show that Vs is positive
also for spherical and conical shaped tips.

Hill [7] stated that the effect of the projectile’s shape has a neg-
ligible influence on the static resistance P1 to penetration and
suggested that this value could be estimated using the theoretical
predictions [4] for the pressure required to statically expand cy-
lindrical and spherical cavities in a large elastic-plastic solid. However,
the numerical simulations discussed in Ref. [9] show that the value
of the drag force F1 in Eq. (8) actually depends on the shape of the
projectile’s tip. Also, the theoretical analysis in Ref. [8] shows that
P1 depends on the shape of the projectile.

Goodier [10] used the expression for the pressure to dynami-
cally expand a spherical cavity as an approximation of the contact
pressure P applied to the surface of a sphere penetrating a ductile
material. The problem of an expanding spherical cavity into an
infinite media is attractive to theoreticians because the solution
depends on only one space variable and time. This theoretical struc-
ture has been used to formulate the solution for elastic-plastic targets
which exhibit a range of material response including compress-
ibility, strain hardening, rate-sensitivity, pressure sensitivity and
porosity (e.g., Refs. [11–17]).

The main idea of cavity expansion models for penetration me-
chanics is to use the solution of the pressure for steady expansion
of a cavity in an elastic-plastic media as an approximation of the
contact pressure applied to a projectile penetrating a target. In its
simplest form, using the solution for steady-state spherical cavity
expansion into an incompressible elastic perfectly plastic media
[5,12], the proposed contact pressure PSC applied to the surface of
a general shaped projectile is given by (e.g., Ref. [8])
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where vn is the normal component of the axial velocity V at the
projectile’s surface.

Another approach to the modeling of penetration mechanics is
based on flow fields in fluid mechanics (e.g., Refs. [18–22]) and has
been applied to eroding long rod penetrators. Amore recent example
of using a realistic flow field in the target can be found in Ref. [23]
where normal penetration of a rigid projectile of the shape of an
ovoid of Rankine into an elastic-perfectly-plastic target was ana-
lyzed. Using this approach, oblique penetration was also considered
in Ref. [24]. The influence of separation on the drag force applied
to the projectile obtained in the solution of normal penetration in
Ref. [23] was further analyzed in Refs. [8,25]. In particular, this an-
alytical solution was shown to predict results similar to those
suggested by Hill [7].

Still another approach is to develop physical insight about
penetration mechanics through analysis of the results of numeri-
cal simulations. In particular, mention is made of the work in Refs.
[9,26,27]. The analyses in these works show that below a critical
penetration velocity Vs the drag force applied by the target on the
projectile is constant. Also, as mentioned before, these simula-
tions show that the value of the drag force in Eq. (8) as well as the
value of the separation velocity Vs both depend on the shape of the
projectile’s tip. In addition, it is noted that the experiments using
steel projectiles with different tip shapes impacting aluminum targets
(e.g., Ref. [11]) were limited to velocities below the critical value
for separation Vs. Consequently, separationwas not observed in these
experiments, as expected.

In the analysis of an ovoid of Rankine, it was shown in Ref. [8]
that the quantity P1 in Eq. (3) depends on the shape of the projec-
tile P1 = P1(ξ). Also, it was shown there that when V = Vs, the
separation circle jumps from the projectile’s tail to a location ξ = ξs
closer to its tip for which
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Fig. 1. Sketch of a projectile of length L and tail radius R which is moving in the
negative ez direction at velocity V. The values {ξs, ξL} denote the axial locations of
the circles where the target material separates from the projectile’s surface and the
projectile’s tail, respectively.
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