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a b s t r a c t

For the first time, detailed accurate numerical solutions for elastic wave propagation in a long axisym-
metric elastic bar under impact loading are obtained using the new finite element technique proposed in
our recent papers. In contrast to known numerical techniques, the new numerical approach quantifies
and removes spurious high-frequency oscillations which may invalidate numerical results in impact
loading simulations. The comparison of the accurate experimental results for the impact of striker and
incident bars with the corresponding accurate numerical results allows us to explain some details of
elastic wave propagation in long bars. For example, due to the absence of very high frequencies in the
obtained experimental results, the mathematical formulation of the problem should include physical
damping for the corresponding range of high frequencies. This range can be defined by the filtering stage
of the new approach in terms of the number of finite elements along the radial direction of the bar. By
the variation of this number we can fit the experimental curves with the numerical results obtained by
the new numerical technique. However, for the accurate numerical solution of the impact problem with
zero physical damping, the number of elements in the radial direction should be large. By the comparison
of the numerical and experimental data, we can accurately determine the longitudinal wave velocity
from experiments. The accurate numerical solutions also allow the analysis of the uniformity of the
different strain and velocity components across the radius at different distances from the impact face.
The validity of some assumptions used in the 1-D theory for wave propagation in long bars is also
checked by the use of the accurate numerical solution. We have also shown that at the elastic impact the
known dispersion-correction technique used for the description of the shape of the wave pulse at
different locations along the axisymmetric bar is inaccurate for the prediction of pulses close to the
impact face.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The current study is motivated by the analysis of velocity, strain
and stress distributions in the split Hopkinson pressure bar (SHPB).
The SHPB is a very popular experimental technique for the study of
mechanical properties of different materials at high rates of
loading. This technique is based on the theory of wave propagation
in elastic long bars. The 1-D theory yields a relatively simple
analytical description of wave propagation, however, it is very
inaccurate for high frequency pulses generated by impact loading.
The axisymmetric and 3-D approaches based on integral transform
techniques (e.g., see Refs. [1e7]) cannot yield closed-form

analytical solutions for elastic wave propagation in a uniform cyl-
inder (except in some asymptotic approximations); e.g., see a short
description of such approaches in Ref. [8]. The semi-analytical
technique used in Ref. [9] also requires the numerical solution of
a system of equations. An approximation of the analytical solution
for wave propagation in a cylinder is reported in Ref. [10] and is
based on the Laplace transform and the numerical approximation
of improper integrals. However, the solution in Ref. [10] contains
spurious oscillations due to Gibbs phenomena (see curve 1 in Fig. 4)
and is difficult to obtain with arbitrary initial and boundary con-
ditions even for a simple geometry.

Relatively simple analytical techniques based on the dispersion
correction (e.g., see Refs. [11e20] and others) are popular for the
correction of the shape of wave pulses obtained in experiments in
the SHPB. These techniques are based on the dispersion relation
between the pulse frequency and the wave propagation rate in an* Corresponding author.
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infinite cylinder; e.g., see Refs. [21,22]. However, as was mentioned
in Ref. [23], there is no rigorous justification of the validity of the
dispersion-correction method due to the application of the results
for an infinite bar to the transient elastodynamics problem for a
finite bar. We have not also seen in the literature that these
dispersion correction techniques have been verified by the com-
parison with accurate numerical solutions at impact loading or at
loading by high-frequency pulses.

A very general approach to the solution of wave propagation in a
finite bar is based on the application of known numerical methods
for elastodynamics; see Refs. [23e28] and others. Especially, the
finite element method is very popular due to the simplicity of its
application by the use of commercial finite element codes; e.g., see
Refs. [23,25,26,28e33] and others. However, for high-frequency
pulses, existing numerical approaches also do not allow an accu-
rate solution of wave propagation problems due to large spurious
high-frequency oscillations. For example, Fig. 1(a) shows the dis-
tribution of the axial velocity along the axis of revolution for the
finite element solution at impact loading of an elastic cylinder with
zero physical damping (see Section 3 for a detailed description of
the problem). These results are obtained with linear finite elements
with increasing mesh refinement and the implicit time integration
by the trapezoidal rule with very small time increments. As can be
seen from Fig. 1(a), the numerical results diverge with increasing
mesh refinement and very small time increments and it is not clear
what the solution is. We should mention that accurate solutions of
elastodynamics problems are an issue with existing numerical
methods based on the semi-discrete equations. Let us analyze this
issue in greater detail. The application of finite elements in space
(or other space discretization methods such as the boundary ele-
ments, spectral elements, the finite difference method and others)
to linear elastodynamics problems leads to a system of ordinary
differential equations in time

M€Uþ C _Uþ KU ¼ R: (1)

Here M, C, K are the mass, damping, and stiffness matrices,
respectively, U is the vector of the nodal displacement, R is the
vector of the nodal load. For wave propagation problems with zero
damping (C ¼ 0), even the exact time integration of Eq. (1) may
yield very inaccurate solutions of the original (before the space
discretization) system of elastodynamics equations due to large
spurious high-frequency oscillations (e.g., due to very small time
increments used, the error in time can be neglected and the re-
sults in Fig. 1(a) are very close to the results with the exact time
integration of Eq. (1)). Spurious high-frequency oscillations are
related to the difference between numerical and exact solutions
(i.e., to the oscillatory part of the numerical error), appear due to
the application of the space-discretization method and are also

affected by the size of time increments; e.g., see Ref. [34] for more
details. Known tools for the suppression of spurious high-
frequency oscillations in existing approaches are based on the
introduction of artificial viscosity or numerical dissipation for a
time integration method at each time increment. However, except
our recent papers, we have not seen in the literature the quanti-
fications of the frequency range of spurious oscillations as well as
the amount of numerical dissipation or artificial viscosity. For
example, in research and commercial finite-element codes the
selection of the amount of numerical dissipation or artificial vis-
cosity is user-defined and subjective because the accurate cali-
bration of spurious oscillations is lacking. Therefore, in a popular
textbook on the finite elements by Ref. [35], we can find the
following statement: ‘In no way can today’s computer program for
wave propagation and impact be treated as ‘black boxes’. A min-
imum 6 months to 2 years of experience is needed to be able to
use such programs successfully’. Another issue with the intro-
duction of numerical dissipation or artificial viscosity at each time
increment is the loss of accuracy at low modes at long-term
integration; e.g., see Ref. [34]. This is very critical when we need
a solution for wave propagation problems in long bars that re-
quires a large number of time increments.

Recently we have developed a newaccurate numerical approach
for wave propagation problems (see Refs. [34,36–41] and the
Appendix). This technique is based on the two-stage time inte-
gration approach with basic computations and the filtering stage,
on the quantification of the range of spurious oscillations in finite
element solutions and their filtering at the filtering stage (there is
no necessity to filter spurious oscillations at each time increment),
and on the finite elements with reduced numerical dispersion.
With the new approach, there is no need for the assumptions
related to the user-defined amount of artificial viscosity or nu-
merical dissipation used in existing numerical approaches. For
example, our results show that this amount should depend on the
order of finite elements, the size of finite elements, the observation
time, the numerical dispersion and other factors. The newapproach
yields numerical results converging to exact solutions with
increasing mesh refinement; e.g., see the results in Fig. 1(b) after
the filtering stage. With the new approach, finite elements codes
can be used as ‘black boxes’ for wave propagation problems.

In this paper, we first shortly describe the experimental tech-
nique for the measurements of wave propagation in a long bar at
impact loading (see Section 2). Accurate numerical simulations of
wave propagation at impact loading based on the new numerical
approach are presented in Section 3.1 with a detailed analysis of the
obtained results. The comparison of the numerical and experi-
mental results is given in Section 3.2. This comparison also leads to
possible explanations of experimental results related to the fre-
quency content of a pulse produced by an impact.

Fig. 1. The distribution of the dimensionless axial velocity vz along the axis of revolution at dimensionless time T ¼ c0t=R ¼ 1:7241379308 without (a) and with (b) the filtering
stage. Curves 1, 2 and 3 correspond to the numerical solutions obtained on uniform meshes with 12, 60 and 150 finite elements in the radial direction, respectively.
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