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a b s t r a c t 

The calibration of phenomenological constitutive material models has been a constant need, because the pa- 
rameters differ for each material and the ability of a model to mimic the real behaviour of a material is highly 
dependent on the quality of these parameters. Classically, the parameters of constitutive models are determined 
by standard tests under the assumption of homogeneous strain and stress fields in the zone of interest. However, in 
the last decade, Digital Image Correlation techniques and full-field measurements have enabled the development 
of new parameter identification strategies, such as the Finite Element Model Updating, the Constitutive Equation 
Gap Method, the Equilibrium Gap Method and the Virtual Fields Method. Although these new strategies have 
proven to be effective for linear and non-linear models, the implementation procedure for some of them is still a 
laborious task. The aim of this work is to give a detailed insight into the implementation aspects and validation of 
these methods. Detailed flowcharts of each strategy, focusing on the implementation aspects, are presented and 
their advantages and disadvantages are discussed. Moreover, these modern strategies are compared for the cases 
of homogeneous isotropic linear elasticity and isotropic plasticity with isotropic hardening. A simple numerical 
example is used to validate and compare the different strategies. 

1. Introduction 

With the innovation surge currently happening in industry, reliable 
and fast solutions for engineering problems are more important than 
ever. Numerical simulation has been a valuable tool for their resolution 
and is now well-established. However, it is essential for these tools to 
keep a continuous improvement of their predictive capabilities. One of 
the areas for potential improvement is mechanical modelling of mate- 
rials and the respective calibration procedure. The quest for more ac- 
curate models has been particularly intense regarding the elasto-plastic 
behaviour of sheet metals. Indeed, many advanced and more complex 
mechanical models have been developed to accurately describe phe- 
nomena such as hardening and anisotropy. However, this increase in 
complexity usually means a tedious process of parameter calibration, 
due to long experimental campaigns. For example, the yield criterion 
Yld2000 [1] depends on 8 material parameters, which requires three 
uniaxial yield stresses and three uniaxial anisotropy coefficients, the bi- 
axial yield stress and anisotropy coefficient. Consequently, in industrial 
practice, simpler models are still preferred to avoid such experimental 
campaign and complex identification process [2] . Therefore, there is a 
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clear demand for new processes of calibration that can simplify the ex- 
perimental campaign without compromising the accuracy of the models. 

Nowadays, there are two main approaches to conduct the identifi- 
cation process: a classical approach and a more recent one based on 
full-field measurements [3,4] . The classical approach relies on simple 
tests, that provide near homogeneous strain and stress states over the 
zone of interest. It is taken advantage of this homogeneity to retrieve 
the material parameters from simple analytical solutions. This kind of 
approach has several drawbacks, i.e.: (i) the limited exploitation of ex- 
perimental tests, since homogeneous stress and strain state assumption 
can no longer be used after the onset of necking; (ii) the large number of 
tests required when complex constitutive models have to be calibrated; 
and (iii) the stress and strain fields do not resemble the ones obtained 
in forming operations. 

The second approach is increasingly being used, mainly because of 
the rapid development of full-field measurements techniques, such as 
digital image correlation [5] . These techniques allow a more flexible 
design of mechanical tests and take advantage of the heterogeneous dis- 
placement/strain fields [6] . Indeed, due to the heterogeneity, each ma- 
terial point experiences a different stress and strain history, hence the 

https://doi.org/10.1016/j.ijmecsci.2018.07.013 
Received 20 February 2018; Received in revised form 11 July 2018; Accepted 14 July 2018 
Available online 19 July 2018 
0020-7403/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.ijmecsci.2018.07.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmecsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2018.07.013&domain=pdf
mailto:joao.martins52@ua.pt
mailto:gilac@ua.pt
mailto:sandrine.thuillier@univ-ubs.fr
https://doi.org/10.1016/j.ijmecsci.2018.07.013


J.M.P. Martins et al. International Journal of Mechanical Sciences 145 (2018) 330–345 

Fig. 1. Domain Ω with prescribed displacement and traction boundary condi- 
tions. 

number of material parameters governing the field is generally greater 
than those driving homogenous strain fields [7] . Therefore, this second 
approach enables to reduce the number of experiments required to cali- 
brate a model. Furthermore, it enables to extend the exploitation limits 
of a test, since the heterogeneous fields are no longer a problem. How- 
ever, effective inverse strategies to extract the material parameters from 

full-field measurements are required. 
Accordingly, the development of inverse strategies in computational 

mechanics has evolved rapidly in recent years, leading to an interesting 
number of strategies based on full-field measurements, e.g. [3,4,8,9] . 
The most well-known methods are the Finite Element Model Updating 
(FEMU) [10] , the Constitutive Equation Gap Method (CEGM) [11] , the 
Equilibrium Gap Method (EGM) [12,13] and the Virtual Fields Method 
(VFM) [14] . These four strategies prove to be effective in identifying 
parameters associated with linear and non-linear models and, there- 
fore, these will be the focus of this work. However, it should also be 
mentioned that more strategies have emerged recently with promising 
results, such as the Constitutive Compatibility Method (CCM) [15] , the 
Dissipation Gap Method [16] , the Self-Optimizing Method (Self-OPTIM) 
[17] and the Integrated Digital Image Correlation Method (Integrated- 
DIC) [18] . 

To the best of the authors knowledge, studies on the implementa- 
tion aspects of these strategies, as well as comparative studies, are rare, 
specially in elasto-plasticity. Since the mentioned strategies rely on dif- 
ferent principles, it is interesting to evaluate their performance in the 
same conditions, as well as their sensitivity to noise. Thus, the aim of 
this study is to introduce the four strategies mentioned above, discuss 
the implementation details and finally, present a comparative study for 
quasi-static loading conditions. For the sake of simplicity, the scope of 
this study lies within the framework of infinitesimal small strains. The 
extension to large strains can be tedious [19,20] , with the exception of 
FEMU, and is out of the scope of this article. 

The outline of this work is as follows. A brief description of the in- 
verse problem and the constitutive models used in this study is pre- 
sented in Section 2 . The four inverse strategies selected, FEMU, CEGM, 
EGM and VFM, are presented in Section 3 , as well as flowcharts for each 
one and a discussion of the main advantages and drawbacks. Finally, in 
Section 4 , the performance of these strategies is compared for two dif- 
ferent constitutive models. This performance study starts with a simple 
case of an isotropic linear elastic model that is afterwards extended for 
an elasto-plastic model with isotropic non-linear hardening. Moreover, 
the comparative studies are performed with and without noise. 

2. Identification/inverse problem 

Consider a continuum solid body whose reference configuration oc- 
cupies the domain Ω and is bounded by 𝜕Ω (see Fig. 1 ). It is assumed 
that the material within the domain Ω is homogeneous. The boundary 

of this body is composed of two sub-boundaries Γf and Γu , such that 
𝜕Ω = Γ𝑓 ∪ Γ𝑢 and Γ𝑓 ∩ Γ𝑢 = ∅. A surface external force is prescribed over 
Γf , possibly with a null value, and a displacement field is prescribed 
over Γu . Neglecting the body forces and assuming static equilibrium, 
a linear elastic behaviour and infinitesimally small displacements, the 
mechanical state of the body is governed by three sets of equations: the 
equilibrium equations, { 

div 𝝈 = 0 in Ω, 
𝝈 ⋅ 𝐧 = 𝐟 on Γ𝑓 , 

(1) 

the kinematic compatibility equations, { 

𝜺 = 

1 
2 

(
𝛁 𝐮 ( 𝐱) + 𝛁 

T 𝐮 ( 𝐱) 
)

in Ω, 
𝐮 = 𝐮̄ on Γ𝑢 , 

(2) 

and the constitutive equation, 

𝝈 = 𝐂 ∶ 𝜺 in Ω, (3) 

where 𝝈 denotes the Cauchy stress tensor, 𝐟 is the prescribed vector 
of external forces over Γf , u is the displacement vector field, 𝐮̄ is the 
prescribed displacement vector field over Γu , 𝜺 is the infinitesimal strain 
tensor and n the unit normal vector to 𝜕Ω. 

The stress and strain are related through Eq. (3) , for which C is 
the constitutive material tensor. It is assumed to be function of a vec- 
tor that gathers all the unknown constitutive material parameters 𝝃 = 

{ 𝜉1 , … , 𝜉𝑛 } ( n is the number of material parameters). In case of isotropic 
linear elastic behaviour, C ( 𝝃) represents the Hooke’s elasticity tensor 
and 𝝃 contains two parameters: Poisson’s ratio 𝜈 and Young’s modulus 
E , 𝝃 = { 𝜈, 𝐸} , respectively. 

For the direct problem of continuum mechanics, the initial shape of 
the solid body, the material parameters and the set of boundary condi- 
tions, ̄𝐟 and ̄𝐮 , are assumed to be known. Accordingly, the unknowns are 
the fields ( u, 𝜺 , 𝝈), which must satisfy the three previous sets of Eqs. (1) , 
( 2 ) and ( 3 ). For the inverse problem of parameter identification using 
full-field measurements, the aim is to retrieve the material parameters 
given a discrete observation of the displacement field 𝐮̂ and informa- 
tion concerning the boundary conditions, 𝐟 and 𝐮̄ . The measured dis- 
placement field 𝐮̂ can be obtained, for instance, through a non-contact 
measurement technique, such as DIC, and the strain field required to 
calculate the stress field can be calculated using Eq. (2) . The idea be- 
hind the inverse problem is to explore an implicit relationship between 
the measured displacement field and the parameters of the constitutive 
model. 

Typically, full-field measurements are performed on the surface of 
the body and this limits the identification through the volume. There- 
fore, the inverse problem in linear and non-linear cases is usually seen 
as a in-plane problem, for which the plane stress assumption can be 
adopted. This assumption implies that the body with domain Ω is a thin 
flat body, with volume V and a constant thickness t that is assumed 
much smaller than the other dimensions. Furthermore, the body only 
undergoes in-plane loading. 

For the case of non-linear elasto-plastic behaviour, the linear rela- 
tionship between stress and strain is no longer valid, and the constitu- 
tive equations are obtained within the classical incremental theory of 
plasticity. In the following, these equations are briefly recalled. 

Consider the additive decomposition of the total strain tensor incre- 
ment d 𝜺 , in terms of elastic d 𝜺 e and plastic d 𝜺 p components, which can 
be written as 

𝑑 𝜺 = 𝑑 𝜺 e + 𝑑 𝜺 p . (4) 

Moreover, consider an hypoelastic relationship to describe the stress- 
strain relation, as follows 

𝑑 𝝈 = 𝐂 ∶ 
(
𝑑 𝜺 − 𝑑 𝜺 p 

)
, (5) 

where d 𝝈 is the stress increment. The plastic strain increment d 𝜺 p can be 
defined by means of three key concepts: a yield criterion, a hardening 

331 



Download English Version:

https://daneshyari.com/en/article/7173583

Download Persian Version:

https://daneshyari.com/article/7173583

Daneshyari.com

https://daneshyari.com/en/article/7173583
https://daneshyari.com/article/7173583
https://daneshyari.com

