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a b s t r a c t 

This paper presents a dual reciprocity boundary element method (DRBEM) formulation for the solution of steady- 
state convection-diffusion-reaction problems with variable velocity field at moderately high Péclet number. This 
scheme is based on utilising the fundamental solution of the convection-diffusion-reaction equation with constant 
coefficients. In this case, we decompose the velocity field into an average and a perturbation, with the latter being 
treated using a dual reciprocity approximation to convert the domain integrals arising in the boundary element 
formulation into equivalent boundary integrals. A proposed approach is implemented to treat the convective 
terms with variable velocity, for which the concentration is expanded as a series of functions. Four numerical 
experiments are included with available analytical solutions, to establish the validity of the approach and to 
demonstrate the efficiency of the proposed method. 

1. Introduction 

The boundary element method (BEM) has been applied to steady- 
state convection-diffusion-reaction problems with variable velocity by 
various researchers [1–9] . However, the solution of this problem is 
still considered a big challenge, particularly for variable and high ve- 
locities. The BEM does have an inherent advantage for the solution of 
convection-diffusion-reaction problems with constant velocity as the ex- 
isting fundamental solution of the problem introduces the exact amount 
of upwind, contrary to finite element or finite-difference methods where 
the upwind is numerical [7] . The dual reciprocity boundary element 
method (DRBEM) represents an alternative for solving linear PDEs with 
variable coefficients [10–14] . The solution of problems involving vari- 
able coefficients is more difficult to achieve with the BEM as funda- 
mental solutions are only available for a small number of cases, for co- 
efficients with very simple variations in space. The approach adopted 
in this paper is to split the velocity field into an average and a pertur- 
bation; the average velocity (constant) is included in the fundamental 
solution, while the perturbation generates a domain integral which is 
treated with the DRBEM. A new particular solution has been used with 
corresponding dual reciprocity expressions. A proposed approach was 
implemented to treat the convective terms with variable velocity. Re- 
sults of four test cases are presented and compared to analytical solu- 
tions. They show that the boundary element formulation developed in 
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this work produces accurate results for diffusion-dominated problems 
with low velocity values. 

A brief outline of the rest of this paper is as follows. Section 2 re- 
views the representation of convection-diffusion-reaction problems. 
Section 3 derives the boundary element formulation using the steady- 
state fundamental solution of the corresponding equation. In Section 4 , 
the DRM formulation is developed for 2D steady-state convection- 
diffusion-reaction problem, followed in Section 5 by a description of 
the discretisation of the DRBEM formulation for this model. Handling 
the convective terms by expanding the relevant functions as a series 
are shown in Section 6 . Section 7 gives the description of the coordi- 
nate functions and the three radial basis functions adopted in this work. 
Section 8 compares and discusses the solution profiles for the present 
numerical experiments. Computational aspects are included to demon- 
strate the performance of this approach in Section 9 . Finally, some con- 
clusions are provided in the last section. 

2. Convection-diffusion-reaction equation 

The two-dimensional convection-diffusion-reaction problem over a 
domain Ω in ℜ 

2 limited by a boundary Γ, for isotropic materials, is 
governed by the following PDE: 

𝐷∇ 

2 𝜙( 𝑥, 𝑦 ) − 𝑣 𝑥 ( 𝑥, 𝑦 ) 
𝜕𝜙( 𝑥, 𝑦 ) 

𝜕𝑥 
− 𝑣 𝑦 ( 𝑥, 𝑦 ) 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑦 

− 𝑘 𝜙( 𝑥, 𝑦 ) = 0 (1) 
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𝑥, 𝑦 ∈ Ω ⊂ ℜ 

𝑑 , 𝑡 > 0 

In Eq. (1) , 𝜙 represents the concentration of a substance, treated as a 
function of space, Γ is a bounded domain in ℜ 

d , d is the dimension of the 
problem. The velocity components v x and v y along the x and y directions 
and assumed to vary in space. Besides, D is the diffusivity coefficient and 
k represents the first-order reaction constant or adsorption coefficient. 
The boundary conditions are 

𝜙 = �̄� over Γ𝐷 (2) 

𝑞 = 

𝜕𝜙

𝜕𝑛 
= 𝑞 over Γ𝑁 

(3) 

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary 
with Γ = Γ𝐷 ∪ Γ𝑁 

. 
The parameter that describes the relative influence of the convective 

and diffusive components is called Péclet number, Pé = |𝑣 |𝐿 ∕ 𝐷, where 
v is the velocity field and L is the characteristic length of the domain. For 
small values of Pé, Eq. (1) behaves as a parabolic differential equation, 
while for large values of Pé the equation becomes more like hyperbolic. 
These changes in the structure of the differential equation according to 
the values of the Péclet number have significant effects on its numerical 
solution. 

3. Boundary element formulation of 

convection-diffusion-reaction problems using steady-state 

fundamental solution 

For the sake of obtaining an integral equation equivalent to the 
above partial differential equation, a fundamental solution of Eq. (1) is 
necessary. However, fundamental solutions are only available for the 
case of constant velocity fields. Thus, the variable velocity components 
𝑣 𝑥 = 𝑣 𝑥 ( 𝑥, 𝑦 ) and 𝑣 𝑦 = 𝑣 𝑦 ( 𝑥, 𝑦 ) are decomposed into average (constant) 
terms �̄� 𝑥 and �̄� 𝑦 , and perturbations 𝑃 𝑥 = 𝑃 𝑥 ( 𝑥, 𝑦 ) and 𝑃 𝑦 = 𝑃 𝑦 ( 𝑥, 𝑦 ) , such 
that 

𝑣 𝑥 ( 𝑥, 𝑦 ) = �̄� 𝑥 + 𝑃 𝑥 ( 𝑥, 𝑦 ) 

𝑣 𝑦 ( 𝑥, 𝑦 ) = �̄� 𝑦 + 𝑃 𝑦 ( 𝑥, 𝑦 ) (4) 

This permits rewriting Eq. (1) as 

𝐷 ∇ 

2 𝜙 − �̄� 𝑥 
𝜕𝜙

𝜕𝑥 
− �̄� 𝑦 

𝜕𝜙

𝜕𝑦 
− 𝑘𝜙 = 𝑃 𝑥 

𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 
(5) 

The above differential equation can now be transformed into the follow- 
ing equivalent integral equation 

𝜙( 𝜉) − 𝐷 ∫
Γ

𝜙∗ 𝜕𝜙

𝜕𝑛 
𝑑 Γ + 𝐷 ∫

Γ

𝜙
𝜕 𝜙∗ 

𝜕𝑛 
𝑑 Γ + ∫

Γ

𝜙𝜙∗ �̄� 𝑛 𝑑 Γ

= − ∫
Ω

( 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 

) 

𝜙∗ 𝑑Ω (6) 

where �̄� 𝑛 = �̄� .𝑛, n is the unit outward normal vector and the dot stands 
for scalar product. In the above equation, 𝜙∗ is the fundamental solution 
of the convection-diffusion-reaction equation with constant coefficients. 
For two-dimensional problems, 𝜙∗ is of the form 

𝜙∗ ( 𝜉, 𝜒) = 

1 
2 𝜋𝐷 

𝑒 
− 
( 
�̄� .𝑟 

2 𝐷 

) 
𝐾 0 ( 𝜇𝑟 ) (7) 

where 

𝜇 = 

[ (
�̄� 

2 𝐷 

)2 
+ 

𝑘 

𝐷 

] 1 
2 

(8) 

in which 𝜉 and 𝜒 are the source and field points, respectively, and r 
is the modulus of r , the distance vector between the source and field 

points. The derivative of the fundamental solution with respect to the 
outward normal direction is given by 

𝜕 𝜙∗ 

𝜕𝑛 
= 

1 
2 𝜋𝐷 

𝑒 
− 
( 
�̄� .𝑟 

2 𝐷 

) [ 
− 𝜇𝐾 1 ( 𝜇𝑟 ) 

𝜕𝑟 

𝜕𝑛 
− 

�̄� 𝑛 

2 𝐷 

𝐾 0 ( 𝜇𝑟 ) 
] 

(9) 

In the above, K 0 and K 1 are Bessel functions of second kind, of orders 
zero and one, respectively (for more details of the fundamental solution 
and its normal derivative, see [4,6,10] ). The exponential term is respon- 
sible for the inclusion of the correct amount of windinto the formulation 
[7] . Eq. (6) is valid for source points 𝜉 inside the domain Ω. A similar 
expression can be obtained, by a limit analysis, for source points 𝜉 on 
the boundary Γ, in the form 

𝑐 ( 𝜉) 𝜙( 𝜉) − 𝐷 ∫
Γ

𝜙∗ 𝜕𝜙

𝜕𝑛 
𝑑 Γ + 𝐷 ∫

Γ

𝜙
𝜕 𝜙∗ 

𝜕𝑛 
𝑑 Γ + ∫

Γ

𝜙𝜙∗ �̄� 𝑛 𝑑 Γ

= − ∫
Ω

( 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 

) 

𝜙∗ 𝑑Ω (10) 

in which c ( 𝜉) is a function of the internal angle the boundary Γ makes 
at point 𝜉. 

4. DRM formulation for steady-state 

convection-diffusion-reaction problem 

In the present formulation, we concentrate on the implementation 
of the dual reciprocity formulation DRM based on the fundamental so- 
lution to the steady-state convection-diffusion-reaction equation, where 
the convective velocity is assumed to be variable and is split into two 
parts, constant and perturbation, respectively. The basic idea is to ex- 
pand the non-homogenous perturbation term on the right-hand side of 
Eq. (5) in the form 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 
= 

𝑀 ∑
𝑘 =1 

𝑓 𝛼𝛼𝑘 (11) 

This series contains a sequence of known functions 𝑓 𝑘 = 𝑓 𝑘 ( 𝑥, 𝑦 ) , and a 
set of unknown coefficients 𝛼k . Using this approximation, the domain 
integral in Eq. (10) can be approximated in the form 

∫
Ω

( 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 

) 

𝜙∗ 𝑑Ω = 

𝑀 ∑
𝑘 =1 

𝛼𝑘 ∫
Ω

𝑓 𝑘 𝜙
∗ 𝑑Ω (12) 

The next step is to consider that, for each function f k , there exists a 
related function 𝜓 k which is a particular solution of the equation 

𝐷 ∇ 

2 𝜓 − �̄� 𝑥 
𝜕𝜓 

𝜕𝑥 
− �̄� 𝑦 

𝜕𝜓 

𝜕𝑦 
− 𝑘𝜓 = 𝑓 (13) 

Thus, the domain integral can be recast in the form 

∫
Ω

( 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 

) 

𝜙∗ 𝑑Ω = 

𝑀 ∑
𝑘 =1 

𝛼𝑘 ∫
Ω

( 

𝐷 ∇ 

2 𝜓 𝑘 − �̄� 𝑥 
𝜕 𝜓 𝑘 

𝜕𝑥 

− ̄𝑣 𝑦 
𝜕 𝜓 𝑘 

𝜕𝑦 
− 𝑘 𝜓 𝑘 

) 

𝜙∗ 𝑑Ω (14) 

Substituting Eqs. (14) into (10) , and utilising integration by parts in the 
domain integral of the resulting equation, we finally obtain a boundary 
integral equation of the form 

𝑐 ( 𝜉) 𝜙( 𝜉) − 𝐷 ∫
Γ

𝜙∗ 𝜕𝜙

𝜕𝑛 
𝑑 Γ + 𝐷 ∫

Γ

𝜙
𝜕 𝜙∗ 

𝜕𝑛 
𝑑 Γ + ∫

Γ

𝜙𝜙∗ �̄� 𝑛 𝑑 Γ (15) 

= 

𝑀 ∑
𝑘 =1 

𝛼𝑘 

⎡ ⎢ ⎢ ⎣ 𝑐 ( 𝜉) 𝜓 𝑘 ( 𝜉) − 𝐷 ∫
Γ

𝜙∗ 𝜕 𝜓 𝑘 

𝜕𝑛 
𝑑Γ + 𝐷 ∫

Γ

𝜓 𝑘 

𝜕 𝜙∗ 

𝜕𝑛 
𝑑Γ + ∫

Γ

𝜓 𝑘 𝜙
∗ �̄� 𝑛 𝑑Γ

⎤ ⎥ ⎥ ⎦ 
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