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a b s t r a c t 

The nonlinear oscillations of an Euler–Bernoulli beam hinged at one end and having a roller support sliding on a 

inclined line on the other end are investigated for the first time (to the best of the authors’ knowledge). Free and 

forced dynamics are studied, and the backbone curve and frequency response curve are obtained by the multiple 

time scale method. These results allow us to detect analytically the main features of the nonlinear dynamics, 

in particular the hardening/softening dichotomy, and how it is influenced by the various beam parameters. 

Furthermore, the analytical results are compared with finite element simulations to check their reliability. The 

main goal of the paper is that of investigating the coupling between axial and transversal displacements, which 

appears yet in the linear regime (first order solution) due to the slope of the constraint. An element of novelty 

consists of showing the qualitative and quantitative changes that the coupling undergoes passing from small 

(linear regime) to moderate and large (nonlinear regime) displacements. 

1. Introduction 

The coupling between transversal (bending) and axial (longitudinal) 

displacements of a planar beam is an interesting dynamical phenomenon 

that, beside its theoretical interest, has also a practical significance since 

in some applications it can be useful to redirect oscillations, and the 

associated elastic and kinetic energy, from transversal to axial direction, 

in order to reduce the maximum transversal displacement, or viceversa. 

On the contrary, it may be dangerous if, for example, one needs only 

longitudinal oscillations and unwanted transversal oscillations appear 

due to coupling, similarly to a spillover effect [1] . It can occur both in 

the linear and in the nonlinear regime. 

There are various forms of coupling. It may occur between purely 

axial and purely transversal modes, as a consequence of internal reso- 

nances [2] , nonlinear [3] or other effects. Alternatively, it can be due 

to normal modes that have both axial and transversal displacements, 

which is the simplest case and which is the situation investigated in this 

work. 

The coupling is due to different sources. In curved beams, it origi- 

nates in the equilibrium equations, and thus entails linear normal modes 

having simultaneously axial and transversal components of the displace- 

ments. In this case coupling is observed yet in the linear regime [4] , 

although of course it is a fortiori present in the nonlinear regime [5] . 

Coupling can occur also in initially straight beams. In the linear 

regime, it may appear when the cross-section is non homogenous and 
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the center of mass is different from the center of flexural stiffness, like for 

example in composite layered beams [6] or in beams with a transverse 

through the thickness localized crack [7] . This effect has been extended 

to the 3D case, too, where the crack is seen to couple axial, transversal 

and torsional vibrations [8] . Also the coupling due to longitudinal crack 

has been studied [9] . 

When mass and stiffness centers coincide, like for example in beams 

with a symmetric cross-section, in the linear regime the axial and 

transversal dynamics are decoupled, and the coupling may be due to 

nonlinear terms, in particular to geometric nonlinearities [10] . The well- 

known “static ” or “kinematic ” condensation method [11] , in which the 

axial inertia is neglected and the axial displacement is thus written as a 

function of the transversal one, is a remarkable example of this behavior. 

In the nonlinear coupling case of straight beams, it may occur that 

second order axial displacement is observed as a consequence of the 

first order flexural oscillation [12] , or it may happen that the first order 

decoupled axial and transversal oscillations couple to the second order 

[3] . The nonlinear coupling has been investigated also in the case of 

drillstrings, where it has been added to impact effects, both in planar 

[13] and 3D cases [14,15] . 

As noted by Ding and Chen [16] , “under certain conditions, an ax- 

ially moving beam may undergo transverse and longitudinal motions 

that are usually coupled if the geometrical nonlinearity has to be con- 

sidered. ” In this case, in addition to the nonlinear geometric coupling, 

also nonlinear coupling appears in the inertial terms, these latter thus 
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Fig. 1. The considered mechanical model. The slope is 𝛽 = tan 𝛼. 

further contributing to coupling [17] . The case of internal resonance has 

been investigated, too [18] . 

Like in axially moving beams, also in rotating beams the bend- 

ing/longitudinal coupling is due to the inertia effects, in particular to 

Coriolis forces [19] . More generally, this is true also for flexible beams 

attached to a moving base [20] . 

In beam conveying fluids, the coupling between longitudinal and 

lateral vibrations is due to the interaction between the fluid and the 

beam, that introduces coupling terms in the governing equations [21] . 

The combined effects of the internal fluid flow and external wave and 

current loads has been investigated in [22] . 

The coupling between axial and transversal modes has been studied 

also in the case of strings [23] , in particular referring to piano strings 

[27] and addressing the acoustic effects of this phenomenon, as well as 

in horizontal and inclined non-shallow cables [24,25] . 

In this paper a different mechanism is investigated, and the coupling 

due to boundary conditions is considered. More specifically, we study 

the coupling provided by an 𝛼-inclined, with respect to the axis of the 

rectilinear planar beam, roller support, as described in Fig. 1 . This en- 

tails having coupling both in linear and nonlinear regimes. In the former, 

in particular, the normal modes have simultaneously axial and transver- 

sal components, while the nonlinear regime further enforces this behav- 

ior. 

As a matter of fact, examples of straight beams with inclined support 

can be found in various engineering applications: an inclined ladder 

resting on a vertical wall with a roller on top, a beam suspended to 

inclined cables (as in hanging shelter suspended), a pedestrian walkway 

from a pier to a float, or from a boat to a pier, the access ramp of the 

roll on/roll of ferries, etc. 

The kinematically exact equations of motion are considered in the 

framework of an Euler–Bernoulli direct beam model, and a linear con- 

stitutive model is considered ( Section 2 ). The axial and transversal par- 

tial differential equation of motions are addressed by the multiple time 

scale method ( Section 3 ), and no reduced order or Galerkin approxi- 

mation are used [26] . The first order problem provides the linear be- 

havior, while the nonlinear behavior is given by the second and third 

other problems, and is investigated in Section 4 by studying the back- 

bone curve, in the free dynamics, and the frequency response curve, in 

the forced dynamics. To check the reliability of the proposed results, 

a comparison between the approximate analytical solution and a nu- 

merical solution obtained by the finite element method is reported in 

Section 5 . The paper ends with some conclusions and suggestions for 

further developments ( Section 6 ). 

2. The mechanical model 

We consider the initially rectilinear planar slender beam depicted in 

Fig. 1 , referred to the inertial frame Z and X . 

The measures of strain are 

𝑒 = 𝑆 

′ − 1 , 𝑘 = 

𝑑𝜑 

𝑑𝑍 

= 𝜑 

′, (1) 

where the prime denotes derivative with respect to spatial variable Z 

(that ranges from 0 to the length of the beam L ) and where: 

• e is the elongation of the beam axis; 
• S ′ is the axial stretch: 

𝑆 

′ = 

√
(1 + 𝑊 

′) 2 + 𝑈 

′2 ; (2) 

• k the mechanical curvature [28] ; 
• 𝜑 is the slope angle of the beam axis, and is given by 

cos 𝜑 = 

1 + 𝑊 

′

𝑆 

′ , sin 𝜑 = 

𝑈 

′

𝑆 

′ , tan 𝜑 = 

𝑈 

′

1 + 𝑊 

′ ; (3) 

• W and U are the displacements in the Z and X directions, respec- 

tively. To the first order, W and U are the axial and transversal dis- 

placements, respectively. 

Since the beam is assumed to be slender, an Euler–Bernoulli model 

is considered, so that there is no shear strain and it is assumed that 

the cross-section remains perpendicular to the beam axis. It is worth to 

remark that we are considering an exact kinematic model. 

The balance equations written in the deformed configuration are 

𝐻 

′
𝑜 
+ 𝑞( 𝑍, 𝑇 ) = 𝜌𝐴 𝑊̈ + 𝑐 𝑊 

𝑊̇ , 

𝑉 ′
𝑒 
+ 𝑝 ( 𝑍, 𝑇 ) = 𝜌𝐴 𝑈̈ + 𝑐 𝑈 𝑈̇ , 

𝑀 

′ − 𝑉 𝑆 

′ = 0 , 
(4) 

where dot denotes derivative with respect to the time T , and where: 

• H o and V e are the horizontal (in the Z -direction) and vertical (in the 

X -direction) internal forces, respectively: 

𝐻 𝑜 = 𝑁 cos 𝜑 + 𝑉 sin 𝜑, 𝑉 𝑒 = 𝑁 sin 𝜑 − 𝑉 cos 𝜑 ; (5) 

• N, V and M are the axial force, shear force and bending moment, 

respectively; 
• 𝜌A is the mass per unit length in the reference configuration, which 

is assumed to be constant; 
• c W 

and c U are the damping coefficients; 
• q ( Z, T ) and p ( Z, T ) are the distributed loads in the Z and X directions, 

respectively; 
• the rotational inertia has been neglected since the beam is slender. 

The beam is assumed to be homogenous and linearly elastic, so that 

the constitutive laws are 

𝑁 = 𝐸𝐴𝑒, 𝑀 = 𝐸𝐽𝑘. (6) 

EA and EJ are the axial and bending stiffnesses, respectively, and are 

the unique constitutive constant parameters of the model. 

Inserting (2) in (1) 1 and (3) 3 in (1) 2 gives 

𝑒 = 

√
(1 + 𝑊 

′) 2 + 𝑈 

′2 − 1 , 𝑘 = 

[
arctan 

(
𝑈 ′

1+ 𝑊 

′

)]′
, (7) 

so that, by (6) and (4) 3 we get 

𝑁 = 𝐸𝐴 ( 
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 − 1) , 

𝑀 = 𝐸𝐽 

[ 
arctan 

( 

𝑈 

′

1 + 𝑊 

′

) ] ′
, 

𝑉 = 

𝑀 

′

𝑆 

′ = 𝐸𝐽 

[
arctan 

(
𝑈 ′

1+ 𝑊 

′

)]′′
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 
. 

(8) 

Inserting these expressions in (5) (and using (3) 1 and (3) 2 ) yields 

𝐻 𝑜 = 𝐸𝐴 ( 
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 − 1) 1 + 𝑊 

′√
(1 + 𝑊 

′) 2 + 𝑈 

′2 

+ 𝐸𝐽 

[
arctan 

(
𝑈 ′

1+ 𝑊 

′

)]′′
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 

𝑈 

′√
(1 + 𝑊 

′) 2 + 𝑈 

′2 
, 

𝑉 𝑒 = 𝐸𝐴 ( 
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 − 1) 𝑈 

′√
(1 + 𝑊 

′) 2 + 𝑈 

′2 

− 𝐸𝐽 

[
arctan 

(
𝑈 ′

1+ 𝑊 

′

)]′′
√
(1 + 𝑊 

′) 2 + 𝑈 

′2 

1 + 𝑊 

′√
(1 + 𝑊 

′) 2 + 𝑈 

′2 
. (9) 

Finally, inserting (9) in the balance equation (4) 1 and (4) 2 provides 

the following two equations in the two unknowns W ( Z, T ) and U ( Z, T ): 
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