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a b s t r a c t 

In this study, we study ultimate swelling characterized by limiting chain extensibility of swollen elastomers. 

Limiting chain extensibility is introduced into the Flory–Rehner theory using the Arruda–Boyce eight chain model 

and the Gent phenomenological model. The difference between these models is unified by defining a single scalar 

function. The inequality derived from this function allows for analysis to provide an ultimate value of swelling 

ratio. This ultimate value is not exceeded at equilibrium swelling regardless of the set of material constants. 

Under uniaxial loading at equilibrium swelling, deswelling can occur even in tension. Further, the very large 

swelling behavior of pH sensitive hydrogels is found to originate from the resistance generated by approaching 

the ultimate value of swelling ratio. 

1. Introduction 

Swelling of elastomers by solvents was first investigated for the com- 

bination of natural rubbers and organic liquids [1,2] . Recently, a num- 

ber of polymeric gels represented by hydrogels are regarded as swollen 

elastomers [3,4] . The Flory–Rehner theory is used to describe the me- 

chanical and swelling behavior of swollen elastomers [1,5] . The free 

energy function consists of the sum of two terms associated with poly- 

mer stretching and the mixing of polymer and solvent molecules, which 

are derived from the Gaussian network theory (i.e., a Neo–Hookean 

(NH) model) and the Flory–Huggins solution theory, respectively. The 

Flory–Rehner theory has been systematically implemented into the com- 

mercially available finite element software [6,7] , thereby allowing re- 

searchers to analyze a variety of swelling-induced mechanical problems 

[4,6,8,9] . However, the NH model may be too simple to describe the 

nonlinear elasticity of elastomers undergoing large deformations. 

When the NH model in the Flory–Rehner theory is replaced by a 

more sophisticated strain-energy function for rubber elasticity, it is nat- 

ural to consider models that include the non-Gaussian chain effect, i.e., 

the effect of limiting chain extensibility. In non-Gaussian network theory 

[2,10] , the limited extensibility of the single chain is expressed approx- 

imately using the inverse Langevin function with an additional material 

constant, n , i.e., the number of rigid links in the single chain. Arruda and 

Boyce [11] developed the 8-chain model (AB model), which is based on 

a cubic representative cell containing 8 chains along diagonal directions 

(cf. 3- and 4-chain models). In contrast, the well-known phenomenolog- 

∗ Corresponding author. 

E-mail addresses: dai.okumura@mae.nagoya-u.ac.jp , okumura@mech.nagoya-u.ac.jp (D. Okumura). 

ical model by Gent [12] (G model) is a simple and accurate approxima- 

tion of the AB model without the inverse Langevin function [13,14] . The 

G model has the additional material constant, J m 

, instead of n used in 

the AB model. The AB and G models are appropriate to investigate the 

effect of limiting chain extensibility because the physical significance of 

the additional material constants, n and J m 

, is clear. 

Chester and Anand [15,16] and Li et al. [17] introduced the AB and 

G models to the Flory–Rehner theory, respectively, to investigate the 

effect of limiting chain extensibility. Chester and Anand [15,16] com- 

pared the transient swelling response of a constrained gel predicted by 

Gaussian and non-Gaussian network theories. Here, the constant related 

with n was fixed and was not parameterized. Li et al. [17] showed that 

by adjusting J m 

in the G model, the discrepancy of osmotic pressure 

functions was removed for very large swelling ratios of two different 

pH sensitive hydrogels. In addition, although Boyce and Arruda [18] in- 

vestigated the use of the AB model, the effect of the swelling ratio on 

the stress–stretch behavior under uniaxial tension and compression did 

not involve the use of the Flory–Rehner theory; i.e., the swelling ra- 

tio was fixed during uniaxial loading. Thus, the effect of limiting chain 

extensibility on the mechanical responses of swollen elastomers is not 

sufficiently clear at full length. 

In addition to those models described above based on the Flory–

Rehner approach, other modeling approaches may be found in the lit- 

erature. One such approach is based on the classical work of Terzaghi 

[19] and Biot [20] which focused on poroelasticity for geomechanics. 

Others following the work of Truesdell [21] , Bowen [22] and Shi et al. 

[23] are based on the theory of mixtures. Recent models using these 
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approaches have found success in modeling the behavior of swollen elas- 

tomers [24,25] . Lastly, Bouklas and Huang [26] have demonstrated that 

a linear poroelasticity theory is consistent with the Flory–Rehner theory 

under the condition of small perturbations from a freely swollen state. 

However, in what follows we take the approach of extending the Flory–

Rehner theory to account for limiting chain extensibility. It is worth- 

while to elucidate the interaction between limiting chain extensibility 

and swelling in swollen elastomers undergoing finite deformations be- 

cause a more comprehensive analysis may provide a deeper interpreta- 

tion to the mechanical and swelling behavior of gels, such as pH sensi- 

tive hydrogels with very large swelling ratios. 

In this study, ultimate swelling characterized by limiting chain ex- 

tensibility of swollen elastomers is examined. Section 2 presents the 

fundamental relations derived from the Flory–Rehner theory. Limiting 

chain extensibility is introduced via the AB and G models. The differ- 

ence between these models is unified by defining a single scalar func- 

tion. Section 3 shows that an inequality is derived from the limit in- 

cluded in this scalar function, which is used for ultimate analysis in 

Sections 4 and 5 . The ultimate analysis is performed under free swelling 

and uniaxial loading, respectively, which yields an ultimate value of the 

volume swelling ratio. This ultimate value is not exceeded at equilib- 

rium swelling regardless of the set of material constants. Under uniaxial 

loading at equilibrium swelling, deswelling can occur even in tension. 

Further, in Section 6 , the very large swelling behavior of pH sensitive 

hydrogels is found to result from the resistance generated by approach- 

ing the ultimate value of swelling. Finally, conclusions are presented in 

Section 7 . 

2. Fundamental relations 

Flory and Rehner [5] assumed that to describe the mechanical and 

swelling behavior of elastomers, the free energy function is expressed as 

the sum of two terms associated with polymer stretching and the mixing 

of polymer and solvent molecules: 

𝑊 = 𝑊 e ( 𝜆𝑖 ) + 𝑊 m ( 𝐶) , (1) 

where W e is the elastic strain energy and W m 

is the mixing energy. The 

use of the Gaussian network theory and the Flory–Huggins solution the- 

ory gives: 

𝑊 e = 

𝐸 0 
6 
( 𝐼 1 − 3 − 𝑎 log 𝐽 ) , Neo − Hookean ( NH ) model , (2) 

𝑊 m = − 

𝑘𝑇 

𝜐

{ 

𝜐𝐶 log 
(
1 + 

1 
𝜐𝐶 

)
+ 

𝜒

1 + 𝜐𝐶 

} 

, (3) 

where 𝜆i ( i = 1, 2, 3) are the principal stretches so that the invariants are 

expressed as 𝐼 1 = 𝜆2 1 + 𝜆2 2 + 𝜆2 3 , 𝐼 2 = 𝜆2 1 𝜆
2 
2 + 𝜆2 2 𝜆

2 
3 + 𝜆2 3 𝜆

2 
1 and 𝐽 = 𝜆1 𝜆2 𝜆3 , 

and C is the nominal concentration of solvent molecules. 

In Eq. (2) , E 0 is the reference Young’s modulus. For the NH model, E 0 
is defined as the Young’s modulus of the undeformed, unswollen state 

(i.e., 𝜆i = 1). The logarithmic term –a log J originates from the entropy 

of deformation [1] . The value of a depends on the theory and can be 

taken as a = 0, 1 and 2 [1,2,7,27] . It is also possible to take a negative 

value to describe phenomenologically the experimental data [28] . This 

logarithmic term will be introduced into the AB and G models in the 

same manner. However, for simplicity, a = 0 is used as the representa- 

tive value (see Appendix A ). In Eq. (3) , kT is the absolute temperature 

expressed as a thermal energy, 𝜐 is the volume per solvent molecule, 

and 𝜒 is the Flory–Huggins interaction parameter that characterizes the 

enthalpy of mixing. 

When the NH model is replaced by the AB or G models including the 

non-Gaussian chain effect, W e for the AB model [11] is expressed as: 

𝑊 e = 

𝐸 0 
6 

{ 

2 
√
𝑛 𝛽Λ + 2 𝑛 log 

( 

𝛽

sinh 𝛽

) 

− 𝑎 log 𝐽 
} 

, 

Arruda − Boyce ( AB ) model , (4) 

where n is the number of rigid links in the single chain related to limited 

extensibility, and 

Λ = 

√ 

( 𝜆2 1 + 𝜆2 2 + 𝜆2 3 )∕3 = 

√
𝐼 1 ∕3 , (5) 

𝛽 = 𝐿 

−1 (Λ∕ 
√
𝑛 ) . (6) 

Here, L − 1 ( x ) is the inverse Langevin function defined as 𝑥 = coth 𝛽 − 

1∕ 𝛽 = 𝐿 ( 𝛽) . In contrast, W e for the G model [12] is expressed as: 

𝑊 e = 

𝐸 0 
6 

{ 

− 𝐽 m log 
( 

1 − 

𝐼 1 − 3 
𝐽 m 

) 

− 𝑎 log 𝐽 
} 

, Gent ( G ) model , (7) 

where J m 

is a material constant to describe the limiting chain extensi- 

bility. When Eqs. (4) and (7) take the limit as n →∞ and J m 

→∞, re- 

spectively, the AB and G models reduce to the NH model [14] . 

In the AB model, the effect of limiting chain extensibility is described 

as a process where L − 1 ( x ) takes the limit as x →1, i.e., 𝛽→∞. Note 

that L − 1 ( x ) cannot be written in a closed form and this feature prevents 

further analytical analysis [29] . To avoid this problem simply, the Padé

approximant can be used to approximate the inverse Langevin function 

[30] , that is, 

𝛽 = 𝐿 

−1 ( 𝑥 ) ≈ 3 𝑥 35 − 12 𝑥 2 

35 − 33 𝑥 2 
, Padé (P) approx . (8) 

Eq. (8) is a simple form and is able to take the limit as x → (35/33) 1/2 ≈
1.03, leading to 𝛽→∞ (cf. a truncation of the Taylor series of L − 1 ( x )). 

Thus, the employment of Eq. (8) makes analytical manipulation easy us- 

ing the AB model. In addition, the G model takes the limit as I 1 →3 + J m 

(see Eq. (7) ). Although there are different approximations originating 

from the Padé approximant [14,29,30] , the present study simply focuses 

on Eq. (8) as a standard case. 

Assuming that the network of polymer and liquid solvent is incom- 

pressible, the volume of swollen elastomers is the sum of the volume 

of the dry network and that of the swelling solvent [2,6] . The volume 

swelling ratio of swollen elastomers is equal to J and is expressed as 

𝐽 = 1 + 𝜐𝐶. (9) 

When a Lagrange multiplier is used in Eq. (1) to impose the constraint 

of Eq. (9) , 

𝑊 = 𝑊 e ( 𝜆𝑖 ) + 𝑊 m ( 𝐶) + Π(1 + 𝜐𝐶 − 𝐽 ) , (10) 

where Π is the Lagrange multiplier, and is referred to as the osmotic 

pressure due to mixing in the present study [7,31,32] . 

Eq. (10) gives the nominal stress in each direction of the principal 

stretches ( i = 1, 2, 3), 

𝑠 𝑖 = 

𝜕𝑊 

𝜕 𝜆𝑖 
= 

𝐸 0 
3 

( 

Ω𝜆𝑖 − 

𝑎 

2 𝜆𝑖 

) 

− Π 𝐽 

𝜆𝑖 
, (11) 

where Ω is the scalar function that depends on the models ( Eqs. (2) , ( (4) 

and (7) ), that is, 

Ω( 𝐼 1 ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

1 , NH model √
𝑛 𝛽

3Λ , AB model 

35 𝑛 −4 𝐼 1 
35 𝑛 −11 𝐼 1 

, AB model + P approx . 

𝐽 m 
𝐽 m − 𝐼 1 +3 

, G model 

. (12) 

The nominal stress of Eq. (11) is transformed into the true stress, 

𝜎𝑖 = 

𝑠 𝑖 𝜆𝑖 

𝐽 
= 

𝐸 0 
3 𝐽 

(
Ω𝜆2 

𝑖 
− 

𝑎 

2 

)
− Π, no sum on 𝑖. (13) 

Eqs. (11) and (13) imply that the difference between the models is uni- 

fied via the single scalar function Ω. Next, when 𝜇 presents the chemical 

potential of the external solvent, Eqs. (3) , (9) and (10) lead to 

𝜇 = 

𝜕𝑊 

𝜕𝐶 

= 𝑘𝑇 

{ 

log 
(
𝐽 − 1 
𝐽 

)
+ 

1 
𝐽 

+ 

𝜒

𝐽 2 

} 

+ Π𝜐 = 0 . (14) 
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