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a b s t r a c t 

In this paper, we establish spectral equivalence between certain non-uniform rotating Rayleigh beams and a given 

uniform Rayleigh beam, and also between non-uniform non-rotating Rayleigh beams and a given uniform rotating 

Rayleigh beam. Spectrally equivalent systems are those that have the same spectra, i.e., the same free vibration 

natural frequencies for a given boundary condition. We use a transformation to convert the non-dimensional 

Rayleigh beam equations from the ( x, W ) frame of reference to a hypothetical ( z, U ) frame of reference. If the 

material and geometric properties of the beam are specific chosen functions of the two introduced auxiliary 

variables, then the transformation will be achieved. If the coefficients of the transformed equation match with 

the required equation, then the equation, on which the transformation is applied, is said to be isospectral to the 

required one. The mode shapes for these particular cases also match due to the nature of assumption on one 

of the introduced auxiliary variables. Frequency and mode shape equivalence of the beams is confirmed by the 

finite element method (FEM). For the considered cases, examples of beams having a rectangular cross-section are 

presented to show the application of our analysis. 

1. Introduction 

Rotating elastic beams with uniform and varying cross-sections are 

used as structural elements in a wide range of engineering fields. They 

serve as useful mathematical models to simulate vibration of helicopter 

blades, long flexible rotating space booms, wind turbines, aircraft pro- 

pellers, turbo machinery blades etc. Hence, the study of free vibration 

of such beams is of great importance for understanding mechanical be- 

haviour and structural reliability of these components. 

Long and slender beams can be accurately modeled using the Euler–

Bernoulli (EB) beam theory; whereas, for short and thick beams, and 

for accurate frequency prediction of the higher modes of vibration, 

the Bresse–Timoshenko (BT) beam theory is more widely used. Free 

vibration studies of rotating Rayleigh [1,2] and Timoshenko beams 

[3–7] are available in the literature. Lord Rayleigh [8] developed a rel- 

atively “simpler theory ” before the Timoshenko beam theory came into 

existence which includes the rotary inertia effect but does not take into 

account the shear deformation [1,9–11] . The Rayleigh beam theory pre- 

dicts the natural frequencies and mode shapes more accurately than the 

Euler–Bernoulli beam theory while avoiding the mathematical complex- 

ities of the Timoshenko beam theory. 

Inverse problems can be stated as finding the cause of a given ef- 

fect or finding a law of evolution given the cause and effect [12–14] . 

Included among such problems in the context of vibration eigenvalue 

problems are many questions like- can we find beams which have 
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given eigenvalues and eigenvectors? What spectral data is necessary 

and sufficient to ensure that the system, if it exists at all, is unique? 

Finding material and geometric properties from known modal param- 

eters and reconstruction of a beam from its spectral data [15–17] is 

one such problem. Multiple beams can have same spectra for a given 

boundary condition. The existence of systems that have the same fre- 

quencies for a given boundary condition but have different material 

and geometric properties is of great interest in mechanics. An impor- 

tant subclass of inverse problems is finding isospectral systems which 

involve finding beams having the same spectra as that of a known 

beam. 

Isospectral Euler–Bernoulli beams with continuous density and rigid- 

ity functions were analyzed by Gottlieb in [18] . Gladwell and Morassi 

[19,20] studied discrete isospectral systems and described ways to form 

inline spring-mass systems isospectral to a given one. Borg [21] stud- 

ied vibrating strings with continuous coefficients. Subramanian and Ra- 

man [22] generalized the transformation to obtain isospectral systems 

for all taper powers. Ghanbari [23] found twelve classes of isospectral 

beams by factoring the fourth-order beam operator into two second- 

order differential operators for four different boundary conditions. Glad- 

well and Morassi [24] considered a specific class of beams where the 

product of stiffness and mass per unit length is constant. Boundary con- 

ditions being any combination of pinned and sliding, they obtained a 

closed form expression for beams isospectral to a given beam. The spe- 

cial class of beams was equivalent to a string and Darboux lemma was 
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Fig. 1. Schematic of (a) non-uniform rotating beam isospectral to a uniform non-rotating beam and (b) non-uniform non-rotating beam isospectral to a uniform 

rotating beam. 

used to reduce the string equation to Sturm-Liouville canonical form. 

In [25,26] , a procedure for obtaining real densities of circular mem- 

branes that are isospectral to a given uniform circular membrane under 

fixed and free boundary conditions was introduced by Gottlieb. Seven 

different classes of beams were found to be analytically solvable and 

isospectral to a homogeneous beam and corrections to the transforma- 

tion used by Barcilon were made in [27] . In [25] it was shown that mem- 

branes isospectral to radial density membranes no longer possess radial 

symmetry. 

Non-uniform and rotating beams are extensively studied and are 

available in the literature. Rajasekaran and Khaniki [28] studied 

the mechanical behaviour of non-uniform small scale beams in the 

framework of nonlocal strain gradient theory. Khaniki and Hosseini- 

Hashemi [29] studied buckling behaviour of tapered small-scale beams 

in the framework of nonlocal strain gradient theory. Rajasekaran and 

Bakhshi Khaniki [30] presents mechanical behaviours of nonhomoge- 

nous nonuniform size-dependent beams using nonlocal strain gradient 

theory. They used finite element method in conjunction with numeri- 

cal integration, Gaussian quadrature method, and Wilson’s Lagrangian 

multiplier to solve problems considered. Khaniki [31] provides an in- 

vestigation on transverse vibrational behaviour of rotating cantilever 

size-dependent beams using the framework of Eringen’s two-phase lo- 

cal/nonlocal model and solving it using a modified generalized differ- 

ential quadrature method. 

Kambampati et al. in [32] found non-uniform rotating beams 

isospectral to a given uniform rotating beam. In another work [33,34] , 

they found non-rotating beams isospectral to rotating uniform beams 

and rotating beams isospectral to axially loaded non-rotating uniform 

beams. Kambampati and Ganguli in [35,36] found non-uniform beams 

and stiff springs isospectral to axially loaded uniform beams and piano 

strings, and non-rotating beams isospectral to tapered rotating beams. In 

their study, they used Barcilon–Gottleib transformation to convert the 

fourth-order governing equation of one type of beam to the required 

one. Then they validated the results using FEM and provided examples 

of isospectral rectangular cross-section beams as the application of their 

analysis. A practical significance of this work was that tests to deter- 

mine rotating or axially loaded beams could be replaced by easier tests 

on non-rotating beams with different mass and stiffness distributions. 

Also, Bhat and Ganguli in [37] have arrived at classes of non-uniform 

Rayleigh beams which are spectrally equivalent to uniform Rayleigh 

beams. 

A natural extension of the work by Kambampati is to address 

Rayleigh beams, which contains the rotary inertia term. In this pa- 

per, we find (i) non-uniform rotating Rayleigh beams with continuous 

mass, mass moment of inertia and flexural stiffness distributions that 

are isospectral to a uniform non-rotating Rayleigh beam and (ii) non- 

uniform non-rotating Rayleigh beam isospectral to a uniform rotating 

Rayleigh beam of the same length under the same boundary condition 

as shown schematically in Fig. 1 (a) and (b). We use a transformation 

to convert the non-dimensional Rayleigh beam equations from the ( x, 

W ) frame of reference to a hypothetical ( z, U ) frame of reference. If 

the material and geometric properties of the beam are specific chosen 

functions of the two introduced auxiliary variables, then the transforma- 

tion will be achieved and, if the coefficients of the transformed equation 

match with the required one (( z, V ) frame of reference), then the equiv- 

alence is established. We arrive at a pair of coupled ODEs which are 

solved for a particular case in which one of the auxiliary functions is 

constant. For case (i), we obtain the closed-form solutions of the mass 

per unit length, mass moment of inertia, centrifugal force and bending 

stiffness variations for a cantilever beam and hinged free beam with an 

elastic hinge spring, and for case (ii), we find non-uniform cantilever 

beams and beams with torsional spring at the free end isospectral to a 

given rotating uniform cantilever beam. The limiting value of rotational 

speeds for both the cases is also specified. The equivalence between the 
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