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a b s t r a c t 

Considering surface effects on nanoscale structures, an isogeometric shape optimization method is developed 

for curved structures using Naghdi ’s shell formulation. Since the curved structures are very sensitive to geomet- 

rical changes, the geometric exactness of isogeometric approach successfully prevents the loss of higher-order 

geometric information in design sensitivity analysis (DSA). A direct differentiation method is employed for the 

DSA, where the control points are selected as the design variables and describe the flexible modeling of free-form 

shell surfaces. Through numerical examples, we verified the accuracy of isogeometric analysis whose framework 

shows better convergence rate than finite element analysis due to the exact geometry and the higher order geo- 

metric information in the DSA formulation. The surface Lamé constants turns out to alter the ratio between the 

portion of membrane and bending energies. Also, the optimal shape is dependent on the residual surface stress 

that affects its stress state. 

1. Introduction 

Nowadays, nanoscale structures such as resonators, mass and bio- 

chemical sensors, and NEMS (Nano Electro Mechanical Systems) are 

widely used in various fields, which requires the accurate prediction 

of nanoscale behaviors for structural analysis. Also, to obtain the better 

performance of nanoscale designs, necessity for structural design opti- 

mization has continuously increasing. Molecular dynamic (MD) simula- 

tion method is generally employed to obtain the physical properties and 

behaviors of nanoscale structures that the continuum based approach 

cannot handle. However, the MD simulations are computationally ex- 

pensive for large scale practical structures. 

To overcome the difficulty of computational costs in MD simulation, 

the continuum based formulations of nanoscale structures have been 

developed. Although the conventional continuum models provide sim- 

ple formulas and have advantage on computational time, the applica- 

tion of these continuum models directly to practical model is question- 

able due to surface effects. The difference of coordination of atoms be- 

tween bulk and surface results in the surface effects that are negligible 

in macro-sized structures since surface-to-volume ratio is small. How- 

ever, as the ratio increases in nanoscale structures, the influences of 

surface have to be taken into account. Miller and Shenoy [1] showed 

that continuum formulations of plate in the nanoscale are reliable by 

comparing with the MD simulation results. However, it is observed that 

accuracy is somewhat decreased in considering bending energy. Din- 

greville et al. [2] showed that material properties have size dependence 

∗ Corresponding author. 

E-mail address: secho@snu.ac.kr (S. Cho). 

due to the increasing importance of surfaces as the scale of structures 

become comparable with the atomic scale. To analyze the nanoscale 

structures using the continuum model with the size effects, the conven- 

tional elasticity theory has been extended to various theories such as 

Gurtin and Murdoch theory [3] , Nonlocal theory [4] , Strain gradient 

elasticity [5] and couple-stress theory [6] . Wang et al. [7] showed that 

the decreased accuracy can be improved by considering residual sur- 

face stress in the formulation. He and Lilley [8] and Jing et al. [9] ex- 

perimentally showed that the continuum theory of Gurtin and Murdoch 

is reliable. Material properties obtained from the continuum formula- 

tion were compared with those measured by AFM (Atomic Force Mi- 

croscopy) facility, which showed fairly good agreement. In this paper, 

the continuum theory by Gurtin and Murdoch is employed to develop a 

shape optimization method for nanoscale structures. 

Curved structures are a generalized form in nanoscale and a curved 

graphene with curvature is one example to show the importance of 

curvature in nanoscale structures. Graphene is a one-atom-thick pla- 

nar sheet of carbon atoms, densely packed together into a honeycomb 

shaped crystal lattice. Some researchers showed that the curvature of 

the curved graphene affects the properties of graphene. Kolesnikov and 

Osipov [10] showed that the curvature of the graphene changes the 

electron density, so the electrical properties can be improved. Gosálbez- 

Martínez et al. [11] discussed that a curved graphene with constant 

curvature is generated by unzipping carbon nanotubes, and the cur- 

vature affects the spin-orbit coupling and bandwidth. Since the curva- 

ture of nanoscale structures fairly affect the properties of structures, the 
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representation of exact geometry and the accurate prediction of me- 

chanical behaviors are highly significant. In this paper, to analyze the 

curved structures in nanoscale, we introduce a continuum shell formula- 

tion considering surface effects, where the interfacial surface is modeled 

as a shell [12] whereas a membrane is modeled in Gurtin and Murdoch 

[3] . Altenbach and Eremeyev [13] discussed the derivation of the gov- 

erning nonlinear shell equations considering surface effects. Zhang et al. 

[14] presented the general equations of piezoelectric shells considering 

the surface effects in an orthogonal curvilinear coordinate system. 

Finite element analysis (FEA), one of the widely used numerical anal- 

ysis methods, has difficulties in dealing with curved structures due to 

the linear approximation of the geometry. The framework of IGA that 

has capability to overcome this difficulty is developed by Hughes et al. 

[15] . The IGA adopts the same NURBS (Non-Uniform Rational B-Spline) 

basis function as used in CAD and does not require any further commu- 

nication with the CAD systems during refinement process. Furthermore, 

Cho and Ha [16] developed an IGA-based shape optimization method 

that can prevent the loss of higher-order geometric information such as 

normal vector and curvature. Also, the developed method is applied to 

heat conduction problems [17] and built-up structures [18] . 

The continuum models for nanoscale structures are also advanta- 

geous in structural optimization. Since most of optimization schemes 

require some iterations of analysis process, the application of MD simu- 

lations to the optimization process results in computationally expensive 

costs. Furthermore, due to the discrete nature of shape variations at the 

atomic level, it is difficult to directly extend the continuum-based DSA 

method to the MD simulations. To overcome the difficulty of discrete 

nature in atomic structures, Jang and Cho [19] developed a method to 

transform the discrete spatial variations into the non-shape variations 

of MD systems. Some continuum based optimization methods consider- 

ing nanoscale effects have been presented in recent years. Evgrafov et 

al. [20] considered the kinetic theory in topology optimization of heat 

conducting devices at nanoscale. An average distance travelled by a par- 

ticle between collisions with other particles is considered in continuum 

formulation to consider nanoscale effects. Nanthakumar et al. [21] in- 

troduced a coupled XFEM/level set method to perform topology opti- 

mization of nanostructures considering nanoscale surface effects. They 

showed different optimal topology by considering the surface effects but 

physical interpretations for the obtained optimal topology at nanoscale 

are not presented. 

The paper is organized as follows: in Section 2 , we introduce the 

equilibrium equations for shell theory considering surface effects in the 

IGA framework. In Section 3 , the isogeometric shape design sensitivity 

is derived for the shells with surface effects. In Section 4 , we give some 

numerical examples, where the influence of surface effects is demon- 

strated and verified with exact solutions. The shape optimization prob- 

lem of minimum strain energy is formulated and its optimal solution is 

verified with exact optimal solution. 

2. Isogeometric analysis of shells 

2.1. NURBS basis function 

Consider a set of knots 𝝃 in one-dimensional case. 

𝝃 = 

{
𝜉1 , 𝜉2 , … , 𝜉𝑛 + 𝑝 +1 

}
, (1) 

where p and n are the order of the basis functions and the number of 

control points, respectively. B-spline basis function can be defined, re- 

cursively, as 

𝑁 

0 
𝑖 
( 𝜉) = 

{ 

1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖 +1 
0 otherwise (2) 
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𝑁 

𝑝 

𝑖 
( 𝜉) = 

𝜉 − 𝜉𝑖 

𝜉𝑖 + 𝑝 − 𝜉𝑖 
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𝑁 

𝑝 −1 
𝑖 +1 ( 𝜉) , ( 𝑝 = 1 , 2 , 3 , …) . (3) 

Fig. 1. Definition of the middle surface of the shell. 

The B-spline has some useful properties as a basis function such as the 

partition of unity, compactness and non-negativity. Using the B-spline 

basis function 𝑁 

𝑝 

𝑖 
( 𝜉) and the corresponding weight w i , a NURBS basis 

function 𝑅 

𝑝 

𝑖 
( 𝜉) is defined as 

𝑅 

𝑝 

𝑖 
( 𝜉) = 

𝑁 

𝑝 

𝑖 
( 𝜉) 𝑤 𝑖 

𝑛 ∑
𝑗=1 

𝑁 

𝑝 

𝑗 
( 𝜉) 𝑤 𝑗 

. (4) 

For the given l pairs of the p th order NURBS basis function 𝑅 

𝑝 

𝑖 
and the 

corresponding control point B i , a NURBS curve is obtained as 

𝐂 ( 𝜉) = 

𝑙 ∑
𝑖 =1 

𝑅 

𝑝 

𝑖 
( 𝜉) 𝐁 𝑖 . (5) 

Similarly, a NURBS surface S is defined as a tensor product of coordi- 

nates, 

𝐒 ( 𝚵) = 

𝑙 ∑
𝑖 =1 

𝑚 ∑
𝑗=1 

𝑅 

𝑝 

𝑖 
( 𝜉) 𝑅 

𝑞 

𝑗 
( 𝜂) 𝐁 𝑖,𝑗 = 

𝐶𝑃 ∑
𝐼 

𝑊 𝐼 ( 𝚵) 𝐁 𝐼 , (6) 

where B I is the location of control point and W I is introduced for the 

brevity of expression. CP and 𝚵 denote the number of control points 

and the set of parametric coordinates for surfaces, respectively. 

2.2. Kinematics of Naghdi ’s shell 

A generic point �̂� ∗ in a shell is represented by 

�̂� ∗ ( 𝑥 1 , 𝑥 2 , 𝑥 3 ) = �̂� ( 𝑥 1 , 𝑥 2 ) + 𝑥 3 𝐚 3 ( 𝑥 1 , 𝑥 2 ) , (7) 

where ̂𝐱 ( 𝑥 1 , 𝑥 2 ) is a material point in the middle surface and a 3 ( x 1 , x 2 ) is 

a unit normal vector at the point and 𝚯 is an one-to-one mapping such 

that 𝚯( Ω) = Ω̂ as shown in Fig. 1 . 

The corresponding covariant base vectors are obtained by 

𝐠 𝛼 = �̂� ∗ 
,𝛼
= ( ̂𝐱 + 𝑥 3 𝐚 3 ) ,𝛼 = 𝐚 𝛼 + 𝑥 3 𝐚 3 ,𝛼 , ( 𝛼 = 1 , 2) , (8) 

where ( •) , 𝛼 denotes the partial derivative with respect to the curvilinear 

coordinates x 𝛼 . a 𝛼 and a 𝛼 are the covariant and the contravariant base 

vectors on the middle surface, respectively, and utilized to construct 

surface metric tensors as 

𝑎 𝛼𝛽 = 𝐚 𝛼 ⋅ 𝐚 𝛽 , 𝑎 𝛼𝛽 = 𝐚 𝛼 ⋅ 𝐚 𝛽 . (9) 

In the Naghdi ’s shell model [22] , a displacement vector is represented 

by 

�̂� ∗ = 𝑢 𝛼𝐚 𝛼 + 𝑥 3 𝜓 𝛼𝐚 𝛼 + 𝑤 𝐚 3 = ( 𝑢 𝛼 + 𝑥 3 𝜓 𝛼) 𝐚 𝛼 + 𝑤 𝐚 3 , (10) 

where u 𝛼 , w , and 𝜓 𝛼 are the in-plane, out-of-plane, and rotational dis- 

placement measures, respectively. The membrane, bending, and shear 

strain measures are given by 

𝜀 𝛼𝛽 = 

1 
2 

(
𝑢 𝛼
‖‖𝛽 + 𝑢 𝛽
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)
, (11) 
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