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a b s t r a c t 

This study reports on a numerical investigation into the open problem of the unique reconstruction of an ellip- 

tical inclusion in the potential field from a single set of nontrivial Cauchy data. The investigation is based on 

approximating the potential fields of a composite material as a linear combination of fundamental solutions for 

the Laplace equation with sources shifted outside the solution domain and its boundary. The coefficients of these 

finite linear combinations are unknown along with the centre, the lengths of the semi-axes and the orientation of 

the sought ellipse. These are determined by minimizing the least-squares objective functional describing the gap 

between the given and computed data. The extension of the proposed technique for the reconstruction of two 

ellipses is also considered. 

1. Introduction 

One hundred years ago Johann Radon discovered the transform on 

which the principles of X-ray tomography are based. However, it took 

fifty years for its importance to be realized and acknowledged. The 

mathematical foundation of tomographic scanning was produced by A. 

Calderon in his seminal presentation in 1980. Since then, numerous 

breakthroughs have occurred on establishing the uniqueness of recover- 

ing the heterogeneous conductivity of a medium from the Dirichlet-to- 

Neumann boundary map culminating with the proof in two dimensions 

[2] for the unique recovery of L ∞-conductivities. However, one of the 

drawbacks of the Calderon formulation is that infinitely dimensional 

input data are required. Therefore, in order to render the formulation 

more practical, a series of papers was initiated by V. Isakov in the late 

eighties concerning the recovery of a piecewise conductivity from a fi- 

nite set of Cauchy data [7,8] . This latter problem may be reformulated 

as a transmission problem for determining the interface between mate- 

rials having different conductivities. 

Convex or concave polygonal interfaces are uniquely identifiable 

from one or two sets of Cauchy data [4,26] but smooth surfaces are 

more difficult to investigate and, up to now, uniqueness with one set of 

Cauchy data is only known for circular or spherical interfaces [12,14] ; 

also confirmed by stability estimates [16,27] and successful numerical 

reconstructions [15,21] . However, for other smooth shapes, e.g. ellipses, 

identification with one measurement is only known for perfectly con- 

ductive or insulated interfaces, i.e. piecewise extreme conductivities of 
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∞ or 0, [13] . Therefore, encouraged by some successful numerical in- 

vestigations in which arbitrary smooth inclusions were recovered using 

either the boundary element method (BEM) [5,6] or the method of fun- 

damental solutions (MFS) [17] , see also [18,19] , it is the purpose of this 

study to investigate the numerical identification of an elliptical interface 

from one measurement of Cauchy data in order to offer insight into the 

uniqueness of the yet unsolved inverse elliptical conductivity problem 

[9] . We note that the shape of an ellipse for an interface is typical for 

both damage and porosity geometries [3] . 

The paper is organized as follows. In Section 2 we provide the mathe- 

matical formulation of the inverse conductivity problem for identifying 

an elliptical inclusion from one Cauchy boundary data measurement. 

The approximation of the resulting transmission problem in a compos- 

ite material using the MFS is presented in Section 3 and the resulting 

nonlinear minimization problem is described in Section 4 . Several exam- 

ples concerning the reconstruction of circular, elliptical and bi-elliptical 

inclusions are presented and discussed in Sections 5 and 6 . Finally, in 

Section 7 we present some conclusions and ideas for future work. 

2. Mathematical formulation 

We consider the inverse conductivity problem of determining a 

piecewise constant isotropic conductivity 1 + ( 𝜅 − 1) ( 𝐷) , where D is 

an unknown inclusion (in this paper an ellipse or a collection of el- 

lipses) compactly contained in a given planar bounded domain Ω ⊂ ℝ 

2 , 

where ( 𝐷) is the characteristic function of the domain D and 𝜅 ≠1 is a 

given positive constant, from a single measurement of the current flux 
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induced by a boundary potential prescribed on 𝜕Ω or vice versa. This 

inverse problem represents the mathematical formulation of the contin- 

uous model of electrical capacitance/impedance tomography. It can be 

recast as the following transmission problem governed by the Laplace 

equations: 

Δ𝑢 1 = 0 in Ω∖ 𝐷 , (2.1a) 

Δ𝑢 2 = 0 in 𝐷, (2.1b) 

subject to the boundary conditions 

𝑢 1 = 𝑓 ≢ constant on 𝜕Ω, (2.1c) 

𝜕𝑢 1 
𝜕𝑛 

= 𝑔 on 𝜕Ω, (2.1d) 

and the transmission perfect contact conditions 

𝑢 1 = 𝑢 2 on 𝜕𝐷, (2.1e) 

𝜕𝑢 1 
𝜕𝑛 − 

= − 𝜅
𝜕𝑢 2 
𝜕𝑛 + 

on 𝜕𝐷, (2.1f) 

where Ω ⊂ ℝ 

2 is a bounded simply-connected planar domain with 

smooth boundary 𝜕Ω and 𝜕D is the ellipse defined by 

𝑥 = 𝑋 + 𝑟 ( 𝜗 ) cos 𝜗, 𝑦 = 𝑌 + 𝑟 ( 𝜗 ) sin 𝜗, 𝜗 ∈ [0 , 2 𝜋) , (2.1g) 

and 

𝑟 ( 𝜗 ) = 

1 √ 

cos 2 ( 𝜗 − 𝜑 ) 
𝑎 2 

+ 

sin 2 ( 𝜗 − 𝜑 ) 
𝑏 2 

. (2.1h) 

In (2.1g) and (2.1h) , ( X , Y ) is the centre of the ellipse, 2 a and 2 b 

are the lengths of the major and minor axes of the ellipse, respectively, 

and 𝜑 is the angle the major axis makes with the horizontal. Similar 

considerations can be made for an ellipsoid in three dimensions using 

spherical coordinates. 

3. The method of fundamental solutions (MFS) 

The MFS for the Laplace equation in a bounded domain may be 

viewed as a numerical discretization of a single-layer potential bound- 

ary integral representation in which the given boundary values and the 

sought solution are defined on different curves [11] . Consequently, a 

solution to the Laplace equation (2.1a) is given as a linear combination 

of fundamental solutions of the form 

𝑢 1 ( 𝒄 , 𝝃; 𝒙 ) = 

𝑀+ 𝑁 ∑
𝑘 =1 

𝑐 𝑘 𝐺( 𝒙 , 𝝃𝑘 ) , 𝒙 ∈ Ω∖ 𝐷, (3.1) 

where G is the fundamental solution of the two-dimensional Laplace 

equation, given by 

𝐺( 𝝃, 𝒙 ) = − 

1 
2 𝜋

log ∣ 𝝃 − 𝒙 ∣ . (3.2) 

The sources 
(
𝝃𝑘 
)
𝑘 = 1 ,𝑀 

are located outside Ω, while the sources (
𝝃𝑘 
)
𝑘 = 𝑀 +1 ,𝑀 + 𝑁 are located in D . The geometry of the problem and the 

location of the source points are sketched in Fig. 1 . More specifically, the 

sources 
(
𝝃𝑘 
)
𝑘 = 1 ,𝑀 

are located on a (moving) pseudo-boundary 𝜕Ω′ simi- 

lar to (dilation 𝛿1 > 0) 𝜕Ω while the sources 
(
𝝃𝑘 
)
𝑘 = 𝑀 +1 ,𝑀 + 𝑁 are located 

on a (moving) pseudo-boundary 𝜕𝐷 

− similar to (contraction 𝛿2 > 0) 𝜕D . 

Similarly, we seek an approximation to the solution of the Laplace 

equation (2.1b) in the form 

𝑢 2 ( 𝒅 , 𝜼; 𝒙 ) = 

𝑁 ∑
𝑘 =1 

𝑑 𝑘 𝐺( 𝒙 , 𝜼𝑘 ) , 𝒙 ∈ 𝐷 , (3.3) 

where the sources 
(
𝜼𝑘 
)
𝑘 = 1 ,𝑁 are located outside 𝐷 on a (moving) pseudo- 

boundary 𝜕𝐷 

+ similar to (dilation 𝛿3 > 0) 𝜕D . The idea of using a ficti- 

tious moving pseudo-boundary in inverse geometric problems was first 

proposed in [19] . 

Fig. 1. Geometry of the problem. The asterisks ( ∗ ) denote the source points 

located on fictitious pseudo-boundaries 𝜕Ω′ (dilation of 𝜕 Ω), 𝜕 𝐷 

− (contraction 

of 𝜕D ) and 𝜕𝐷 

+ (dilation of 𝜕D ). 

Since we have 2 M Cauchy boundary conditions (2.1c) and (2.1d) and 

2 N interface conditions (2.1e) and (2.1f) we have a total of 2 𝑀 + 2 𝑁
equations. The unknowns consist of the 𝑀 + 𝑁 coefficients 

(
𝑐 𝑘 
)
𝑘 = 1 ,𝑀+ 𝑁 , 

the N coefficients 
(
𝑑 𝑘 

)
𝑘 = 1 ,𝑁 , the centre ( X , Y ), the semi-axes of the ellipse 

a and b , the angle 𝜑 and the three dilation/contraction coefficients 𝛿1 , 

𝛿2 , 𝛿3 , yielding a total of 𝑀 + 2 𝑁 + 8 unknowns. In order to avoid an 

under-determined situation we require M ≥ 8. 

We next define the collocation points 
(
𝒙 𝓁 

)
𝓁= 1 ,𝑀+ 𝑁 , where 𝒙 𝓁 = (

𝑥 𝓁 , 𝑦 𝓁 
)
, the sources 

(
𝝃𝑘 
)
𝑘 = 1 , 𝑀+ 𝑁 , where 𝝃𝑘 = 

(
𝜉𝑥 
𝑘 
, 𝜉
𝑦 

𝑘 

)
, and the sources (

𝜼𝑘 
)
𝑘 = 1 ,𝑁 , where 𝜼𝑘 = 

(
𝜂𝑥 
𝑘 
, 𝜂
𝑦 

𝑘 

)
. Without loss of generality, we shall as- 

sume that the (known) fixed exterior boundary 𝜕Ω is a circle of radius R . 

As a result, the outer boundary collocation and source points are chosen 

as 

𝒙 𝑚 = 𝑅 

(
cos 𝜃𝑚 , sin 𝜃𝑚 

)
, 𝑚 = 1 , 𝑀 , (3.4) 

𝝃𝑚 = 𝛿1 𝑅 

(
cos 𝜃𝑚 , sin 𝜃𝑚 

)
, 𝑚 = 1 , 𝑀 , (3.5) 

respectively, where 𝜃𝑚 = 

2 𝜋( 𝑚 −1) 
𝑀 

, 𝑚 = 1 , 𝑀 , and the (unknown) param- 

eter 𝛿1 ∈ (1, S 1 ) with S 1 > 1 prescribed. 

We choose the inner boundary collocation and source points as 

𝑥 𝑀+ 𝑛 = 𝑋 + 𝑟 ( 𝜗 𝑛 ) cos 𝜗 𝑛 , 𝑦 𝑀+ 𝑛 = 𝑌 + 𝑟 ( 𝜗 𝑛 ) sin 𝜗 𝑛 , (3.6) 

𝜉𝑥 
𝑀+ 𝑛 = 𝑋 + 𝛿2 𝑟 ( 𝜗 𝑛 ) cos 𝜗 𝑛 , 𝜉

𝑦 

𝑀+ 𝑛 = 𝑌 + 𝛿2 𝑟 ( 𝜗 𝑛 ) sin 𝜗 𝑛 , (3.7) 

and 

𝜂𝑥 
𝑛 
= 𝑋 + 𝛿3 𝑟 ( 𝜗 𝑛 ) cos 𝜗 𝑛 , 𝜂𝑦 𝑛 = 𝑌 + 𝛿3 𝑟 ( 𝜗 𝑛 ) sin 𝜗 𝑛 , (3.8) 

𝑛 = 1 , 𝑁 where 𝜗 𝑛 = 

2 𝜋( 𝑛 −1) 
𝑁 

, 𝑛 = 1 , 𝑁 , and the (unknown) parameter 

𝛿2 ∈ ( S 2 , 1) (with 0 < S 2 < 1 prescribed) and the (unknown) parameter 

𝛿3 ∈ (1, S 3 ) with S 3 > 1 prescribed. 

4. Implementational details 

The coefficients 
(
𝑐 𝑘 
)
𝑘 = 1 , 𝑀+ 𝑁 in (3.1) , the coefficients 

(
𝑑 𝑘 

)
𝑘 = 1 ,𝑁 in 

(3.3) , the contraction coefficient 𝛿2 and the dilation coefficients 𝛿1 , 

𝛿3 in (3.5), (3.7), (3.8) , the coordinates of the centre ( X , Y ), the half- 

lengths of the major and minor axes a and b in (2.1g) and the angle 

𝜑 in (2.1g) can be determined by imposing the boundary conditions 

(2.1c) and (2.1d) and the transmission conditions (2.1e) and (2.1f) in a 

least-squares sense. This leads to the minimization of the functional 

𝑆( 𝒄 , 𝒅 , 𝜹, 𝑪 , 𝑎, 𝑏, 𝜑 ) ∶= 

𝑀 ∑
𝑗=1 

[
𝑢 1 ( 𝒄 , 𝝃; 𝒙 𝑗 ) − 𝑓 ( 𝒙 𝑗 ) 

]2 + 

𝑀 ∑
𝑗=1 

[ 
𝜕𝑢 1 
𝜕𝑛 

( 𝒄 , 𝝃; 𝒙 𝑗 ) − 𝑔( 𝒙 𝑗 ) 
] 2 
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