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a b s t r a c t 

As the first endeavour, the coupled nonlinear mechanical behaviour of extensible functionally graded mi- 
crobeams, when both viscoelasticity and imperfection are present, is investigated. The imperfect viscoelastic 
microbeam is subject to a transverse harmonic excitation load of a constant amplitude. The Kelvin–Voigt vis- 
coelastic model and Mori–Tanaka homogenisation method are used together in order to describe the internal 
energy loss and the variation of the material properties of the microsystem along the transverse direction, respec- 
tively. The geometric imperfection is modelled by imposing an initial curvature in the transverse deformation of 
the viscoelastic microscale beam. Using the Euler–Bernoulli strain–displacement relations, the geometric nonlin- 
earity is taken into account. The non-classical nonlinear equations of motion are derived on the basis of Hamilton’s 
principle and the modified couple stress theory. The resulting equations are found to be coupled between trans- 
verse and longitudinal oscillations. Galerkin’s technique and the method of pseudo-arclength continuation as 
well as direct time-integration approach are finally employed to solve the governing differential equations for 
oscillation frequencies and nonlinear dynamic response. It is found that the nonlinear forced oscillations of ex- 
tensible functionally graded microbeams are greatly affected by the internal energy loss together with geometric 
imperfection. It is shown that the simultaneous presence of viscoelasticity and geometric imperfections governs 
both the amplitude and softness/hardness of the dynamical behaviour. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, small-scale structures such as micro/nanoscale 
beams and plates have attracted an extensive interest due to their unique 
mechanical and physical properties [1,2] . Micro/nanoscale structures 
have a wide range of applications in the new fields of engineer- 
ing such as micro/nanomechanics and biomechanics [3,4] . In particu- 
lar, micro/nanoscale beams including carbon nanotubes (CNTs), ZnO 

nanowires, boron nitride nanotubes (BNNT) and silicon microbeams 
have been used as a building block of many microelectromechanical sys- 
tems (MEMS) and nanoelectromechanical systems (NEMS). For instance, 
in an interesting work, a label-free single-cell analysis was carried out 
using ultrasound microscale beams [5] . On the other hand, to improve 
the mechanical performance of micro/nanoscale beams, the new gen- 
erations of this class of microsystems have been manufactured of inho- 
mogeneous composites such as functionally graded (FG) materials [6] . 
In fact, microstructures made of FG materials [7,8] are more resistant 
to thermal and mechanical stresses than the conventional homogeneous 
structures. These alluring features make FG microstructures favourable 
in the generation of novel MEMS devices. 

E-mail address: mergen.ghayesh@adelaide.edu.au 

Since the mechanical characteristics of micro/nanoscale materials 
are size-dependent, the use of the traditional classical continuum me- 
chanics in the static and dynamic analysis of these materials might be 
uncertain. Over the two past decades, some modified size-dependent 
elasticity theories [9,10] have been introduced to overcome the short- 
comings of the traditional elasticity theories. Eringen’s nonlocal elastic- 
ity theory [11–13] , strain gradient theory [14,15] , the theory of couple 
stress [16–18] and nonlocal strain gradient elasticity theory [19,20] are 
the most popular ones due to their simplicity as well as their capabil- 
ity in the modelling of complex structures at the micro/nanoscale level. 
Among these higher-order size-dependent theories, the modified ver- 
sion of the couple stress theory and strain gradient theory have been 
used by many researchers [21–36] in order to study the mechanics of 
microstructures. However, the mechanical behaviour of nanostructures 
is commonly analysed by means of the nonlocal elasticity theory. Wang 
et al. [37] used the nonlocal version of the Timoshenko beam theory in 
order to examine the bending of micro and nanobeams. Danesh et al. 
[38] presented a nonlocal continuum model for the axial oscillation of 
tapered nanorods with various boundary conditions. They employed the 
differential quadrature method as a numerical tool to determine the fun- 
damental frequencies of the non-uniform nanorod. In an another work, 
Akgöz and Civalek [39] investigated the longitudinal oscillation of mi- 
crobars based on the theory of strain gradient elasticity. In addition, a 
size-dependent mathematical model was proposed by Li et al. [40] for 
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the deformation of a bi-layered micro-plate under an applied load via 
the strain gradient theory. Roque et al. [41] employed the Timoshenko 
beam theory and the modified couple stress theory so as to develop a 
continuum model for the bending of laminated composite nanobeams 
subject to transverse loads. They solved the governing differential equa- 
tions of the system numerically via a meshless technique. Ghayesh et al. 
[42] examined the nonlinear dynamic response of microbeams in the 
context of the theory of couple stress elasticity. 

Besides the development of modified continuum models for CNTs, 
and piezoelectric nanobeams, size-dependent elasticity theories have 
been also employed to investigate the statics and dynamics of FG mi- 
crostructures. Ş im ş ek and Yurtcu [43] presented a closed-form solution 
for the bending and buckling of FG nanoscale beams within the frame- 
work of a nonlocal beam theory. Moreover, the strain gradient theory 
and the Euler–Bernoulli beam theory were used to examine the buck- 
ling behaviour of size-dependent functionally graded microbeams [44] . 
An exact solution was also obtained for the large-amplitude forced os- 
cillation of nanoscale beams made of FG materials in the presence of 
thermal effects via use of a surface elasticity theory [45] . Furthermore, 
Thai et al. [46] used a modified strain-gradient theory to explore the 
nonlinear response of FG microplates subjected to static and dynamic 
loadings using an isogeometric approach. In another research study, 
a consistent couple-stress model was developed for the oscillation of 
nanobeams made of arbitrary bi-directional FG materials [47] . 

Viscosity is one of effective ways to model internal energy dissipa- 
tion (friction) in continuous structures such as beams and plates; this 
effect can be dominant in the mechanical behaviour of microsystems 
[48,49] . The Kelvin–Voigt viscosity model is used in this study to in- 
clude the internal friction effect. In practical applications, there may be 
a geometric imperfection in micro/nanoscale structures, which can cause 
a considerable change in their mechanical characteristics. Such initial 
imperfections can be caused by initial stress or the lack of sufficient 
precision in the manufacturing process. 

According to the best of my knowledge, the simultaneous effects of 
geometric imperfections and viscosity on the nonlinear forced oscilla- 
tion of extensible FG microbeams have not been studied yet. This moti- 
vates me to present a scale-dependent continuum model for this prob- 
lem. The length-scale effect is taken into account via the modified cou- 
ple stress theory. In order to model the internal energy dissipation of 
the system, the Kelvin–Voigt viscoelasticity is incorporated into the re- 
lations of stress tensor and the symmetric couple stress tensor. Using 
von Karman’s theory, the geometric nonlinearity is considered in the 
formulation. Both the longitudinal and transverse displacements as well 
as the inertia of the viscoelastic FG imperfect microbeam are considered 
in the coupled dynamic analysis. The geometric imperfection of the mi- 
croscale system is caused by an initial deflection in the thickness direc- 
tion. The nonlinear curves of the dynamics of extensible FG viscoelastic 
imperfect microbeams are obtained employing the Galerkin procedure 
together with the pseudo-arclength continuation approach in conjunc- 
tion with the method of direct time-integration. The numerical results 
are presented for various viscosity and imperfection values in order to 
highlight their effects. 

2. Model development for the viscoelastic imperfect microsystem 

and discretisation 

In this section, a modified continuum model is developed for the 
coupled nonlinear dynamics of functionally graded (FG) viscoelastic mi- 
crobeams with geometric imperfections. Fig. 1 shows an extensible FG 

microscale beam with viscoelastic properties under a harmonic trans- 
verse loading F ( x )cos ( 𝜔 t ) where 𝜔 , F ( x ) and t stand for the excitation 
frequency, forcing amplitude and time, respectively. Let me denote the 
displacements in the x and z directions by u and w , respectively. As can 
be seen from the figure, an initial deflection w 0 is taken into account in 
the transverse direction, as an initial imperfection [50] . In the present 

work, the microscale beam is composed of a ceramic-metal mixture so 
that effective physical and mechanical properties vary along the thick- 
ness direction. Therefore, for the approximation of the effective material 
properties of the microsystem, the Mori–Tanaka law may be used [51] . 
Based on this approach, we have 
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where K , v and 𝜇 are, respectively, the effective values of bulk mod- 
ulus, volume fraction and shear elasticity modulus. In addition, in the 
above relations, m and c denote the metal and ceramic phases, respec- 
tively. The simple relationship between the two volume fractions of FG 

microbeams is described as 

𝑣 𝑐 + 𝑣 𝑚 = 1 . (2) 

The distribution of the ceramic across the thickness is usually as- 
sumed as follows [51] 

𝑣 𝑐 ( 𝑧 ) = ( 0 . 5 + 𝑧 ∕ ℎ ) 𝑛 . (3) 

Here h and n are the thickness of the microbeam and the gradient 
index, respectively. It should be noted that the effective elasticity mod- 
ulus ( E ) and Poisson’s ratio ( 𝜈) also vary in the z direction and can be 
calculated as 

𝐸 ( 𝑧 ) = 

9 𝐾𝜇
3 𝐾 + 𝜇

, (4) 

𝜈( 𝑧 ) = 

3 𝐾 − 2 𝜇
6 𝐾 + 2 𝜇

. (5) 

In a similar way, for other material properties, one obtains 

𝜌( 𝑧 ) = 𝜌𝑚 𝑣 𝑚 + 𝜌𝑐 𝑣 𝑐 , (6) 

𝑙 ( 𝑧 ) = 𝑙 𝑚 𝑣 𝑚 + 𝑙 𝑐 𝑣 𝑐 , (7) 

𝜂( 𝑧 ) = 𝜂𝑚 𝑣 𝑚 + 𝜂𝑐 𝑣 𝑐 , (8) 

where 𝜌, l and 𝜂 represent the effective mass density, the length-scale pa- 
rameter and the viscosity coefficient, respectively. In the present work, 
it is assumed that the cross-sectional area of the microbeam is constant, 
and it remains perpendicular to the middle plane. Moreover, only geo- 
metric nonlinearity induced by the stretching of the mid-plane is consid- 
ered. The nonlinear strain–displacement relation of an Euler–Bernoulli 
microbeam with a geometric imperfection can be written as 

𝜀 𝑥𝑥 = 

𝜕𝑤 

𝜕𝑥 

d 𝑤 0 
d 𝑥 

− 𝑧 
𝜕 2 𝑤 

𝜕 𝑥 2 
+ 

1 
2 

(
𝜕𝑤 

𝜕𝑥 

)2 
+ 

𝜕𝑢 

𝜕𝑥 
, (9) 

where 𝜀 xx represents the strain component along the x axis and 
perpendicular to the cross-sectional area of the microbeam. It is 
worth mentioning that other strain components are equal to zero (i.e. 
𝜀 xz = 𝜀 zx = 𝜀 yy = 𝜀 zz = 𝜀 xy = 𝜀 yz = 0). According to the modified theory of 
couple stress in conjunction with the Euler–Bernoulli theory of beams 
we have [52] 
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