
International Journal of Mechanical Sciences 140 (2018) 394–406 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

An improved method of determining Gotoh ’s nine material constants for a 

sheet metal with only seven or less experimental inputs 

Wei Tong 

Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas 75275-0337, USA 

a r t i c l e i n f o 

Keywords: 

Anisotropic plasticity 

Non-quadratic yield criterion 

Orthotropic flow potential 

Sheet metal forming 

Intrinsic variables 

Convex polynomials 

a b s t r a c t 

A method is described for estimating the material constants in Gotoh ’s fourth-order yield stress function for 

modeling anisotropic yielding and plastic flow of a sheet metal with only up to seven available experimental 

inputs. The yield function is assumed to have a reduced degree of planar anisotropy so its nine material constants 

can be computed directly via simple algebraic relations using seven or less experimental inputs available for the 

sheet metal. The key idea behind the proposed method is to first transform a polynomial yield function such as 

Gotoh ’s in terms of two principal stresses and one loading directional angle and to set coefficients of some high 

order Fourier cosine terms in the transformed yield function to be zero as needed. Not only the method is much 

simpler to use in comparison with many other existing methods appeared in the literature, the results obtained 

for many representative sheet metals also give consistent and even superior description of directional dependence 

of uniaxial tensile yield stress and plastic strain ratio without any undesired spurious and large oscillations. As 

Gotoh ’s yield function is one of the simplest complete non-quadric polynomials with the enhanced modeling 

capability, the simple analytical calculations of all of its material constants should facilitate its wider application 

as the new default choice of orthotropic plasticity modeling in industrial sheet metal forming analyses. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The classical associated plasticity theory for describing the yielding 

and plastic flow of orthotropic sheet metals was first proposed by Hill in 

1948 [1] and the plane stress version of his quadratic polynomial yield 

function has the following form 

Φℎ ( 𝜎𝜎𝜎) = �̄�2 = 𝐹 𝜎2 
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𝑥 
+ 𝐻 ( 𝜎𝑥 − 𝜎𝑦 ) 2 + 2 𝑁 𝜏2 

𝑥𝑦 
, (1) 

where 𝝈 = ( 𝜎x , 𝜎y , 𝜏xy ) is the Cartesian stress with its components in 

sheet metal orthotropic axes (with the x -axis being corresponding to the 

rolling direction of a sheet metal), F, G, H , and N are its four material 

constants, and �̄� may be regarded as an equivalent yield stress of the 

sheet metal undergoing plastic deformation. 

As Hill ’s quadratic yield function has been found over the years to be 

inadequate, non-quadratic yield functions are increasingly used instead 

for associated plasticity modeling of many sheet metals in industrial 

forming applications [2–4] . One of the earliest and also simplest non- 

quadratic yield functions is the fourth-order homogeneous polynomial 

studied by Gotoh in 1977 [5] , i.e., 
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where A 1 , A 2 , ... and A 9 are its nine material constants. Gotoh [5,6] de- 

tailed in particular the parameter identification of those nine material 

constants for two sheet metals using one measurement 𝜎b from an equal 

biaxial tension test and eight measurements ( 𝜎0 , 𝜎45 , 𝜎90 , 𝜎𝜃 , R 0 , R 45 , 

R 90 , R 𝜃 , where 𝜃 = 22 . 5 o or 67 . 5 o ) from at least four uniaxial tension 

tests. 

Gotoh ’s 1977 yield function captures better the directional variation 

of both yield stresses and plastic strain ratios under uniaxial tension and 

may model the so-called anomalous behavior under equal biaxial tension. 

Some recent investigations indicated that Gotoh ’s yield function is suffi- 

ciently robust and sometimes even superior than other non-quadratic or 

non-associated anisotropic plasticity models of lightweight aluminum 

alloys and advanced high strength steels [7–10] . Nevertheless, with few 

exceptions [11–13] , Gotoh ’s yield function has however not been more 

widely considered for sheet metal forming analysis applications outside 

Japan since its initial developments. Among the plausible reasons given 

in the past for such a situation include 1) Gotoh ’s yield function in its 

form presented in Eq. (2) is quite complicated and its material constants 

have no physical meaning [14,15] ; 2) the polynomial function is not 

guaranteed in general to be strictly positive and convex [13,16] ; and 3) 

it has too many material constants [15] as usually only up six to eight 

mechanical property measurements ( 𝜎0 , 𝜎45 , 𝜎90 , 𝜎b , R 0 , R 45 , R 90 , R b ) 
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NOTATION 

x,y,z The orthotropic material symmetry axes cor- 

responding to the rolling (RD), transverse 

(TD), and normal (ND) directions of a thin 

sheet metal. 

𝜎x , 𝜎y , 𝜏xy Three in-plane Cartesian (two normal and 

one shear) components of an applied Cauchy 

stress in the orthotropic coordinate system of 

the sheet metal. 

Φh , F,G,H,N Hill ’s 1948 quadratic anisotropic yield stress 

function in plane stress and its four material 

constants. 

Φg , A 1 , ... , A 9 Gotoh ’s 1977 fourth-order anisotropic yield 

stress function in Cartesian stress compo- 

nents ( 𝜎x , 𝜎y , 𝜏xy ) and its nine material con- 

stants. 

𝜎𝜃 , R 𝜃 , 𝜎b , R b Yield stress and plastic strain ratio under uni- 

axial tension at the loading orientation angle 

𝜃 and under equal biaxial tension. 

𝜎1 , 𝜎2 , 𝜃 The so-called intrinsic variables according to 

R. Hill, namely, the two in-plane principal 

stresses ( 𝜎1 , 𝜎2 ) and the loading orientation 

angle 𝜃 between 𝜎1 and the RD of the sheet 

metal. 

𝜙g , F ( 𝜃), G ( 𝜃), H ( 𝜃) Gotoh ’s yield function recast in intrinsic vari- 

ables in terms of five homogeneous stress 

terms ( 𝜎4 1 , 𝜎
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2 ) and its three 

in-plane Fourier cosine series functions in 

terms of 𝜃. Those three functions have a total 

of nine independent coefficients ( F 0 , F 1 , F 2 , 

F 3 , F 4 , G 0 , G 1 , G 2 , H 0 ). 

are most often reported for a sheet metal in developing its non-quadratic 

yield functions [15,17–19] . 

The first two objections or difficulties about using Gotoh ’s yield func- 

tion have recently been effectively dealt with. Firstly, a yield function 

expressed in terms of a complete polynomial form such as Eq. (2) is now 

actually called “user-friendly ” and is increasingly preferred in a prac- 

tical finite element coding implementation [16] . That is, many exist- 

ing homogeneous yield functions of a high integer order can always be 

rewritten into such a unique and consistent polynomial form [16,20,21] . 

The material constants (the polynomial coefficients) can simply be ob- 

tained from a set of analytically derived linearly independent equations 

in terms of various yield stress ratios of the same integer order and plas- 

tic strain ratios [5,13,16,21,22] . 

Secondly, although a yield function in terms of a homogeneous poly- 

nomial such as either Hill ’s 1948 yield function Φg or Gotoh ’s 1977 yield 

function Φg is not guaranteed in general to be unconditionally positive 

and convex, one can always check if a calibrated polynomial yield func- 

tion with known coefficients is strictly positive and convex or not. Hill ’s 

quadratic yield function has its unique advantage on this regard as its 

positivity and convexity can be easily verified using the necessary and 

sufficient conditions in terms of simple algebraic inequalities on its ma- 

terial constants as given by Hill in [23] . No such simple algebraic in- 

equalities on the nine material constants of Gotoh ’s yield function have 

been reported so far as necessary and sufficient conditions that ensure 

the yield function is positive and convex. Nevertheless, there is no actual 

uncertainty regarding the positivity and convexity of a specific Gotoh ’s 

yield function if it has been fully calibrated for a given sheet metal: it 

has recently been shown that its strict positivity and convexity can al- 

ways be straightforward checked and established numerically in several 

ways [10,21] . The calibrated Gotoh ’s yield function with certified pos- 

itivity and convexity can thus be safely used in a rate-independent and 

associated plasticity framework for plastic strain increment calculations 

of the sheet metal under biaxial loading. 

This study focuses on the third and remaining issue that may hin- 

der a wider application of Gotoh ’s yield function when the results of 

only up to three uniaxial tensile tests and one equal biaxial tension test 

are used to characterize the anisotropic yielding and plastic flow of a 

sheet metal. There are at least four different approaches that have been 

reported in the literature for parameter identification of Gotoh ’s yield 

function when only seven experimental measurements ( 𝜎0 , 𝜎45 , 𝜎90 , 𝜎b , 

R 0 , R 45 , R 90 ) are made available for a sheet metal. The first approach 

simply assumes that two of the nine material constants A 6 and A 8 in 

Gotoh ’s yield function are the same and both are equal to − 𝐴 7 [24] . Its 

shortcoming of predicting spurious and unrealistically large oscillations 

in uniaxial plastic strain ratios in some sheet metals is well-documented 

[25] . The second approach is to fill in the two missing experimental 

inputs from additional tensile tests by averaging [12] or interpolating 

the available uniaxial tensile yield stresses or plastic strain ratios [10] . 

The third approach belongs to the classical optimization method using 

weighted least-squares of both yield stress differences and plastic strain 

ratio differences for parameter identification when the number of exper- 

imental inputs is equal to or exceeds the number of independent material 

constants in a yield function [13,16,18,26] : the specific example related 

to Gotoh ’s yield function was appeared in [13] which uses a weighted 

average method instead of a simple average method [24] to fill in four 

missing experimental inputs from two additional uniaxial tensile tests 

and then minimizes a least square error to obtain values of A 6 and A 8 

from a set of eleven inputs (the four filled-in inputs plus the seven ac- 

tual experimental inputs). The fourth approach is to use the well-known 

non-quadratic yield function YLD2000-2D that needs only up to eight ex- 

perimental inputs for its parameter identification [27] : when the stress 

exponent 𝑀 = 4 is used by Kuwabara et al. [8] , their YLD2000-2D is 

basically another reduced form of Gotoh ’s yield function. 

We present here yet another but more rational and much simpler 

approach towards the parameter identification of Gotoh ’s yield function 

for a sheet metal with only up to seven experimental inputs. The idea 

is to explicitly assume the sheet metal with a reduced planar anisotropy 

or equivalently to drop out higher order sinusoid terms from its Gotoh ’s 

yield function. These conditions of reduced anisotropy constitute natu- 

rally as additional constraints on Gotoh ’s nine material constants so the 

total number of independent material constants matches the number of 

available experimental inputs for the sheet metal. This parameter iden- 

tification approach of using only limited and insufficient experimental 

inputs by setting some higher order Fourier coefficients to be zero is 

generally applicable to other higher-order polynomial yield functions as 

well although the analytical expressions for each polynomial coefficient 

in those yield functions may not be as simple and short as the case of 

Gotoh ’s yield function studied here. That is, the solution of linear equa- 

tions analytically derived via the proposed parameter identification ap- 

proach may be obtained numerically for all coefficients in practice in 

those higher-order polynomial cases. 

In Section 2 , the new parameter identification method is detailed by 

re-casting first the original Gotoh ’s yield function in terms of principal 

stresses and Fourier cosine series functions of the in-plane loading ori- 

entation angle [21,22] . Being consistent with the limited availability of 

experimental measurement inputs for a sheet metal with seven, five and 

three experimental inputs, the method sets its corresponding two, four 

or six higher-order Fourier coefficients in the transformed yield function 

to be zero accordingly. All of nine polynomial coefficients (material con- 

stants) in the original Gotoh ’s yield function can then be obtained via 

simple algebraic expressions using seven or less experimental inputs. 

Results of positive and convex Gotoh ’s fourth-order yield functions are 

given in Section 3 by applying the proposed parameter identification 

method to a total of nine representative sheet metals with only seven ex- 

perimental measurement inputs. Gotoh ’s yield functions calibrated for 

first six sheet metals using both the newly proposed and several existing 

parameter identification methods appeared in the literature are directly 
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