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a b s t r a c t 

This paper investigates the dynamic characteristics and vibration transmission behaviour of interactive oscilla- 

tors with nonlinearities at their coupling interface. Three different types of stiffness nonlinearities, i.e., hardening 

stiffness, softening stiffness and double-well potential type stiffness and cubic damping nonlinearity are consid- 

ered. Both analytical approximations based on the method of averaging and also numerical integrations are em- 

ployed to obtain the steady-state response and to determine the vibration transmission level. The time-averaged 

vibration power variables and kinetic energies of the system and the force transmissibility are formulated and 

obtained analytically and numerically. Time-averaged transmitted power is used as an index to quantify vibration 

transmission associated with both periodic responses and non-periodic responses such as chaos. It is found that 

hardening stiffness nonlinearity at the interface can lead to higher vibration power transmission at high excitation 

frequencies. In comparison, softening stiffness nonlinearity at the coupling interface can result in higher vibration 

transmission at lower excitation frequencies. It is shown that the interface with double-well potential stiffness 

nonlinearity may yield chaotic responses that can significantly affect vibration transmission as indicated by time- 

averaged transmitted power. It is also found that cubic damping nonlinearity may cause lower time-averaged 

transmitted and dissipated powers at the interface in the vicinity of resonant frequency. These findings provide 

better understanding of the effects of nonlinearity at the interface on vibration transmission, and facilitate better 

designs of coupling interface for control of vibration transmission. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The vibration power flow analysis (PFA) approach has become a 
widely accepted tool to characterise the dynamic behaviour of complex 
systems and coupled structures. Comparing with individual measures 
of vibration transmission using force and/or displacement transmissi- 
bilities, vibration power flow combines the effects of force and velocity 
amplitudes as well as their phase angle in a single quantity, and thus 
provides a better indicator of vibration transmission between various 
sub-systems of an integrated structure [1,2] . Suppression of vibration 
transmission may not be guaranteed by purely reducing force or dis- 
placement transmissibility. However, effective vibration mitigation can 
be expected when there is lower vibration energy transmission. Since 
the introduction of the fundamental concepts of power flows in ref. [1] , 
many PFA techniques, such as a dynamic stiffness method [3] , a mobil- 
ity method [4] , a travelling wave and scattering method [5] , a power 
flow progressive approach [6] , and an energy flow finite element ap- 
proach [7] have been proposed and developed for linear dynamical sys- 
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tems such as beams, plates, plate-like structures and cylindrical shell 
structures. Xing and Price [8] proposed a more general PFA method 
based on the principle of continuum mechanics, in which power flow 

density vector was defined. The application of this method was demon- 
strated through analysis of some simple structures. However, solutions 
to the power flow equations of complex structures may be challeng- 
ing and need further study. Xiong et al. [9] provided a general linear 
mathematical framework for PFA of structural-control systems. Both 
mobility-based and damping-based power flow mode theories were also 
proposed, which may be used to determine vibration power transmis- 
sion in linear dynamical systems and also to achieve specific power flow 

patterns by modifying damping distribution within a dynamical system 

[10,11] . 
Although much research has been carried out to understand the 

power flow behaviour of linear vibration systems, there has been lim- 
ited work reported on power flow characteristics of nonlinear dynam- 
ical systems. However, engineering structures are inherently nonlinear 
in nature and they may exhibit strong nonlinear phenomena, such as 
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limit cycle oscillations, bifurcation and chaos. There is also an increas- 
ing use of lightweight, flexible structures which may undergo large de- 
formation and function in the nonlinear plastic regime. The associated 
power flow behaviour remains largely unclear. There is also a grow- 
ing interest in exploiting nonlinearity in the design of nonlinear vi- 
bration mitigation systems to enhance vibration attenuation [12] . One 
example is the use of geometric nonlinearities of some mechanisms 
to create nonlinear negative stiffness, which when used in combina- 
tion with linear supporting stiffness, can lead to a low linearised nat- 
ural frequency and thus provide benefits for vibration isolation [13] . 
While force and displacement transmissibilities have been used to eval- 
uate the performance of nonlinear vibration isolators [14] , much less 
work has been reported on the use of vibration power flow as the 
performance indicator of nonlinear isolators [13] . It is worth noting 
that to reveal the power flow and vibration transmission characteris- 
tics of nonlinear systems, linear PFA theories cannot be directly ap- 
plied. It is therefore necessary to develop effective power flow methods 
for nonlinear dynamical systems to examine their inherent power flow 

behaviour. 
There have been growing interests in investigations of nonlinear dy- 

namical systems from a vibration power and energy perspective. Roys- 
ton and Singh [15] used power flow transmission as a performance index 
in the optimisation of a multiple degree-of-freedom nonlinear mounting 
system. The authors also investigated an automotive hydraulic engine 
mount and showed the vibration power flow from an excited rigid body 
through a nonlinear path to a resonant receiver [16] . Xiong et al. [17] in- 
vestigated the vibration power flow behaviour of an interactive system 

consisting of a machine, a nonlinear isolator and a flexible ship excited 
by sea waves. The isolator was characterised by p th power damping and 
q th power stiffness and the input power was shown to be only locally 
sensitive to the nonlinearities. Vakakis et al. [18] investigated the time- 
averaged power flow of conservative nonlinear systems and revealed 
targeted energy transfer phenomenon, which corresponds to a one-way 
channelling of vibration energy from a primary structure to a nonlinear 
attachment. Yang et al. [19–21] investigated power flow characteris- 
tics of the Duffing oscillator [19] , a nonlinear vibration isolation system 

with a negatives stiffness mechanism [13] , the performance of a nonlin- 
ear dynamic vibration absorber [20] and also a 2DOF system with an 
excited machine mounted on a nonlinear base structure via a nonlinear 
isolator [21] . It was found that the time-averaged input power associ- 
ated with a chaotic response of the Duffing oscillator tends to an asymp- 
totic value as the averaging time increases. Also, the asymptotic value 
of this time-averaged input power was shown insensitive to the initial 
conditions of a single chaotic attractor [19] . Therefore, time-averaged 
input power may be employed to quantify vibration transmission level 
associated with periodic, aperiodic and chaotic responses. It can thus be 
used as a uniform index for direct comparisons of the level of vibration 
transmission within a nonlinear dynamical system exhibiting different 
types of possible responses. 

It should be noted that systems with nonlinear coupling interface 
or nonlinear joints at the connection point are frequently encountered 
in engineering applications. For instance, aircraft engines often contain 
nonlinear joints such underplatform dampers, blade roots and flange 
joints [22] . Many built-up structures contain bolted joints with nonlin- 
earity caused by slipping of contacting surfacing and opening and clo- 
sure of interfacial gaps [23] . The interfacial nonlinearities in the struc- 
tures may exert significant influence over the dynamic characteristics 
of the integrated system. There have been some studies reported on the 
dynamic behaviour of structures with local nonlinearities [24,25] . Nev- 
ertheless, the effects of nonlinearities on vibration transmission within 
nonlinear systems still need further investigations. The influence of non- 
linearities on the vibration power flow through nonlinear coupling inter- 
faces remains unclear. It is therefore of importance to develop vibration 
PFA methods to evaluate the influence of coupling nonlinearities on vi- 
bration transmission, to reveal vibration energy transfer characteristics, 
and to enhance dynamic design by exploiting nonlinearities. 

In this paper, the vibration transmission between interactive oscil- 
lators with a nonlinear coupling interface is investigated from both a 
force transmission viewpoint and also from a vibration power flow per- 
spective. The effects of stiffness nonlinearity with hardening, softening, 
or double-well potential characteristics and cubic damping nonlinearity 
on vibration transmission are examined. Both analytical approximation 
and numerical integration methods will be used to evaluate vibration 
power input, dissipation and transmission as well as force transmissi- 
bility. The remaining content of the paper is organised as follows. The 
mathematical model of the system and analytical derivations will be 
provided in Section 2 . Section 3 deals with formulations of vibration 
power flow, kinetic energies and force transmissibility for evaluations 
of vibration transmission levels. Section 4 investigates the effects of the 
damping nonlinearity and different types of stiffness nonlinearities on 
the time-averaged vibration power flow and force transmission. Conclu- 
sions are drawn at the end of the paper. 

2. Mathematical modelling 

2.1. Model descriptions and the governing equations 

Fig. 1 shows the system model comprising two subsystems with 
a nonlinear coupling interface. Subsystem one is a single degree-of- 
freedom (DOF) system consisting of a mass m 1 subject to a harmonic 
excitation of amplitude f and frequency 𝜔 , a viscous damper of damp- 
ing coefficient c 1 , and a linear spring with stiffness coefficient k 1 . Sub- 
system two is another single DOF system having mass m 2 , a viscous 
damper with damping coefficient c 2 , and a linear spring with stiffness 
coefficient k 2 . The masses both move horizontally without frictions and 
their static equilibrium positions, where x 1 = x 2 = 0 and the springs are 
un-stretched, are taking as the reference. The coupling interface between 
the two subsystems is characterised by nonlinearities in both damping 
and stiffness. The damping force and restoring force of the nonlinear 
damper and the nonlinear spring at the nonlinear interface are 𝐺( ̇𝛿) and 
H ( 𝛿), respectively, which are expressed by 

𝐺 

(
�̇�
)
= 𝑐 3 �̇� + 𝑐 4 �̇�

3 , (1a) 

𝐻 ( 𝛿) = 𝑘 3 𝛿 + 𝑘 4 𝛿
3 , (1b) 

where 𝛿 = x 2 − x 1 is the relative displacement of the masses, c 3 and c 4 
are constant linear and nonlinear damping coefficients, respectively, k 3 
and k 4 are the constant linear and nonlinear stiffness coefficients, re- 
spectively. 

The dynamic governing equations of the integrated system are 

𝑚 1 ̈𝑥 1 + 𝑐 1 ̇𝑥 1 + 𝑘 1 𝑥 1 − 𝐺 

(
�̇�
)
− 𝐻 ( 𝛿) = 𝑓 cos 𝜔𝑡, (2a) 

𝑚 2 ̈𝑥 2 + 𝑐 2 ̇𝑥 2 + 𝑘 2 𝑥 2 + 𝐺 

(
�̇�
)
+ 𝐻 ( 𝛿) = 0 . (2b) 

To facilitate later derivations, the following dimensionless parameters 
are introduced 
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where 𝜔 1 and 𝜔 2 are the undamped natural frequencies of subsystems 
one and two, respectively, 𝜇 is the mass ratio, 𝜆 and 𝛽 are the linear 
and nonlinear stiffness ratios of the spring at the interface, respectively, 
𝛾 is the natural frequency ratio, l 0 is assumed to be the un-stretched 
length of the spring on the left, X 1 and X 2 are the non-dimensional dis- 
placements of masses m 1 and m 2 , respectively, Y is the non-dimensional 
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