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a b s t r a c t

Aim of the paper is to find how the acoustic and vibration responses of rectangular carbon-fiber-re-
inforced plastic (CFRP) plates is changed by the various orientation of fiber in a CFRP plate. First, the
vibration and acoustic response of the CFRP plate excited by a concentrated harmonic force along with
the natural vibration were evaluated theoretically. The theoretical solutions were verified by comparing
with numerical simulations, which were conducted using commercial software. Second in order to
confirm the numerical solutions, the experimental works were performed with three CFRP plates having
different fiber orientation of 0°, 45°, and 90°. Finally the influence of fiber orientation on vibration and
acoustics was investigated in CFRP plates.

& 2016 Published by Elsevier Ltd.

1. Introduction

Fiber-reinforced composite structures are extensively used in
the aerospace, automobile, and marine industries and other en-
gineering applications because of their superior specific mechan-
ical properties. Generally, CFRP (Carbon Fiber Reinforced Plastic)
plates may have various fiber orientations to make it effective
performing for their mechanical applications. The change of fiber
orientation in a unidirectional CFRP plate of rectangular shape
with clamped boundaries gives rise to the changes of the fiber
length between the plate boundaries and the material principal
axis with respect to the reference axis. They in turn affect the
characteristics of the vibration and acoustic response of the plate.
Therefore, it is necessary to study the effect of the fiber orientation
on the vibration and acoustic response characteristics of CFRP
plates to reduce noise or vibration when they are used in in-
dustrial applications. To date, much work has been done on the
dynamic response or acoustic response of an orthotropic lami-
nated plate. Orthotropic plates may be a special case of anisotropic
plates; thus, some anisotropic plate vibrations were studied by
Ashton et al. [1–3] and Bert and Mayberry [4]. They examined the
effect of the orientation of the principal elastic axes on the plate

mode shapes and natural frequencies using the Rayleigh–Ritz
method and Galerkin's method, respectively. Mohan and Kings-
bury [5] researched the effect of orthotropy on the mode shape
and natural frequencies of square plates under three sets of
boundary conditions using Galerkin's method. The boundary
conditions of all the clamped edges were not considered. Do-
naldson and Chander [6] and Lee and Kam [7] investigated ex-
perimental modal analysis techniques for rectangular plates under
various boundary conditions for the determination of the ortho-
tropic elastic constants of fiber-reinforced composite. Sakata and
Hosokawa [8] studied the dynamic response of a clamped ortho-
tropic rectangular plate subjected to an arbitrary distributed load
and suggested a double trigonometric series form as a solution
with a numerical simulation. Li [9] studied the forced vibration of
a clamped orthotropic rectangular plate subjected to a con-
centrated harmonic force using a superposition method. Berry
et al. [10] analyzed the radiation of sound from a baffled rectan-
gular plate with the edges elastically restrained against deflection
and rotation. They found that low deflection stiffness at the edges
dramatically decreases the radiation efficiency of the elastic
modes. Nelisse et al. [11] studied the radiation of both baffled and
unbaffled plates. The Rayleigh–Ritz approach was used to develop
the plate displacement in the baffled case, as well as the pressure
jump in the unbaffled case. The radiation efficiency of an unbaffled
clamped plate in water was presented up to moderate frequencies
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and compared with that of the baffled plate. However, few studies
are available in the literature regarding the effect of the fiber or-
ientation on the vibration and acoustic response of a CFRP plate
with all the edges clamped and under a point harmonic load. In
this paper, the natural frequencies of the plate are reviewed by
obtaining a theoretical solution using Galerkin's method, and the
theoretical results are compared with the numerical results ob-
tained by numerical solution with commercial finite element
software. The effect of the fiber orientation on the natural fre-
quencies of three sets of CFRP plates is simulated using the nu-
merical solution and confirmed experimentally. The vibration re-
sponse of the CFRP plate subjected to steady-state excitation is
analyzed theoretically using the principle of virtual work. The
acoustic response of the CFRP plate subjected to steady-state ex-
citation is investigated analytically using the Rayleigh integral. The
numerical solutions are again employed to simulate the vibration
and acoustic response of the CFRP plate subjected to steady-state
excitation, and the results are compared with the theoretical re-
sults. The effect of the fiber orientation on the vibration and
acoustic response of three sets of CFRP plates subjected to a point
harmonic load is also simulated numerically with commercial fi-
nite element software. Experiments are also conducted to validate
the simulated results.

2. Mathematical model

Consider an orthotropic rectangular thin plate mounted on a
flat rigid baffle of infinite extent. The Cartesian coordinates on the
composite plate are sketched in Fig. 1. The dimensions of the plate
are a in the x direction, b in the y direction, and h in thickness.
Radiation is considered only into the half-space defined by þz.
The acoustic pressure at the field point p can be obtained by di-
viding the radiating surface of the plate into infinitesimal ele-
ments, each of which acts like a baffled simple source of strength.
A laminate is composed of N laminas that are orthotropic having
the same principal coordinate system.

2.1. Vibration response of plate

The equations used in this analysis are derived under the usual
assumption of classical small-deflection thin-plate theory [12] and

the appropriate constitutive stress–strain relations for a thin ani-
sotropic plate, which are [13]
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where the coefficients Di,j represent the flexibility rigidity of the
plate, and u and v are the in-plane displacements. The following
equation then governs the lateral motion of the plate excited by a
harmonic force on an arbitrary point on its surface [13,14]:
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where ρ is the density of the plate, h is its thickness, and w is w(x,y,
t), which represents the displacement along the z direction at the
point (x,y). If the plate material is orthotropic with mutually per-
pendicular material principal axes (α, β) oriented such that α
makes an angle θ with the x axis of the coordinate system (x, y),
then the flexible rigidity Di,j in Eq. (1) is a function of the ortho-
tropic technical elastic constants Eα, Eβ, Gαβ, and ναβ (or νβα) and
the angle θ, as follows [15]:
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where Eα and Eβ are the longitudinal Young's modulus (in the α
direction) and transverse Young's modulus (in the β direction),
respectively; Gαβ is the shear modulus; ναβ and νβα are Poisson's
ratios; m is cosθ; and n is sinθ. Considering the external point
force f to be harmonic with a frequency ω and acting on the point
(x0, y0) along the positive z axis and letting [16]
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Fig. 1. Coordinates of rectangular CFRP plate under vibration.
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