Author's Accepted Manuscript

Analysis of FRP-to-concrete interfaces using a displacement driven partial interaction model

Huawen Zhang, Scott T. Smith, Rebecca J. Gravina

ww.elsevier.com/locate/iimecsc

PII: S0020-7403(16)30172-2

http://dx.doi.org/10.1016/j.ijmecsci.2016.08.006 DOI:

MS3386 Reference:

To appear in: International Journal of Mechanical Sciences

Received date: 17 September 2015

Revised date: 22 July 2016 Accepted date: 5 August 2016

Cite this article as: Huawen Zhang, Scott T. Smith and Rebecca J. Gravina Analysis of FRP-to-concrete interfaces using a displacement driven partia model, International Journal Mechanical Sciences interaction of http://dx.doi.org/10.1016/j.ijmecsci.2016.08.006

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Analysis of FRP-to-concrete interfaces using a displacement driven partial

interaction model

Huawen Zhang^a, Scott T. Smith^{b,*}, Rebecca J. Gravina^c

^aCountry Garden Group, Foshan, Guangdong Province, China

^bSchool of Environment, Science and Engineering, Southern Cross University, Lismore, 2480,

NSW, Australia

^cSchool of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, 3001,

Victoria, Australia

*Corresponding author. Tel: +61 2 6620 3088; fax: +61 2 6621 2669. scott.smith@scu.edu.au

(S.T. Smith).

Abstract

Fibre-reinforced polymer (FRP)-to-concrete bonded interfaces are susceptible to bond failure in the concrete at the interface. This paper presents the details of a partial interaction model that is capable of analysing such bond failure in FRP-to-concrete joints. The model is driven by displacing the slip between the FRP and concrete at the loaded end of the joint and is thus able to capture unloading of the bonded interface. Such unloading is due to a reduction in the available length of the bonded plate on account of progressive plate debonding. A bond stress versus slip

Download English Version:

https://daneshyari.com/en/article/7174056

Download Persian Version:

https://daneshyari.com/article/7174056

<u>Daneshyari.com</u>