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a b s t r a c t

In the current work, we present an analytical model for the characterization of the mechanical response
of helical constructions to thermal loads. In particular, we elaborate closed-form expressions to compute
the forces and moments induced by homogeneous and non-homogeneous temperature fields. We nu-
merically verify the validity of the formulas over a wide range of geometric configurations, while we
apply them to evaluate the mechanical response of two single layer cable configurations upon combined
axial and thermal strains. Finally, we demarcate the range of angles for which the thermal structural
response to homogeneous and non-homogeneous temperature fields considerably differs.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Helices are encountered in biological constructions, as for ex-
ample in tendons [1], as well as in a wide range of engineering
applications. In particular, they are used as the primal constituent
of cables, ropes and stents [2–6], while they are commonly found
as reinforcement, or nano- and meso-structure elements [7–9].

In order to understand and characterize their mechanical be-
havior, a large number of analytical models have been developed.
The models have provided closed-form expressions that relate the
helix material and geometric attributes with the forces and mo-
ments induced by different loading patterns. More specifically,
formulas characterizing the mechanical response to axisymmetric
loads, in particular to axial [10], torsional [11–13] and radial loads
[14] have been elaborated. Moreover, closed-form expressions for
the analysis of non-axisymmetric loads as for example bending
loads have been derived [15].

The analytical models have been complemented by both la-
boratory experiments and numerical models. On the experimental
modeling side, the mechanical response of single and multi-layer
helical strands to axial loads has been measured [16,17]. The
measurements have provided useful insights into the role of the
strand's structural arrangement on the deformation profile, as well

as on the forces and moments generated. On the numerical
modeling side, different finite element models have been devel-
oped to simulate the helix axial and torsional loading mechanical
response [18–20], their applicability being primarily illustrated in
the context of engineering helical strands [21].

In the realm of biomechanical engineering, clinical studies have
been conducted to characterize the response of metallic helical
stents to pressure radial loads [22]. Moreover, dedicated finite
element models of helical scaffolds have been constructed to
provide a virtual bioengineering framework for the design of
biocompatible ligament tissue engineering scaffolds [23,24].

Dedicated numerical models have been further constructed to
analyze the axial loading mechanical properties of nanoscale he-
lical springs with different cross section profiles [25], noting their
extensive applications in nanoengineering [26], as well as in mi-
crosystem technologies [27].

Along with the need to analyze and characterize the response
of helical structures to mechanical loads (e.g. axial, torsional or
radial loads), the necessity to account for the effect of non-me-
chanical loads, in particular of thermal effects has become appar-
ent in a wide range of applications. More specifically, in power
transmission cable engineering, variations in the electrical load
induce thermal loads, which in turn alter the structure's loading
state and considerably affect its life expectancy [28,29]. Accord-
ingly, in composite structure's engineering, in order to appro-
priately design helical bar reinforcements, the range of allowable
temperature variations needs to be determined, for which analy-
tical effective rod models and numerical models have been
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proposed [7]. Effective layered cylinder models have been re-
spectively developed to retrieve the thermal mechanical proper-
ties of carbon nanotube arrays [8]. Finally, the effect of thermal
loads on the structural response of suspended cables has been
elaborated, making use of the catenary equation [6].

While a large number of analytical and numerical models have
been developed to characterize the structural response of helical
constructions to mechanical loads, the effect of non-mechanical
loads, in particular of thermal loads, has been captured by means
of either effective analytical models, or numerical models. How-
ever, no analytical expression has been so far provided to explicitly
account for the role of the helix geometric and material properties,
as well as for the thermal loading input type.

In the current work, we derive closed-form expressions that
characterize the structural response of helical constructions to
homogeneous and non-homogeneous thermal loads. In Section 2,
we describe the helix thermal loading kinematics, upon which, we
formulate the structure's constitutive and equilibrium equations.
By that means, we correlate the helix material and geometric at-
tributes with the forces and moments developed, providing in
Section 3.1 analytical thermal loading stiffness expressions. In
Section 3.2, we employ the formulas to assess the effect of dif-
ferent thermal loads on the loading state of single layer, axially
strained cables. Finally, we discuss on the magnitude of the forces
and moments created in conjunction to the thermal field applied
and conclude with a discussion of the main results in Section 4.

2. Mechanical model formulation

2.1. Helix geometry

We describe the helix geometry as a helical fiber. The helix
centerline is characterized by the position vector φ( )R , defined in a
Cartesian basis e e e, ,x y z as follows [30]:
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In Eq. (1), parameter a represents the helix radius, while b
stands for the helix rise along the central Cartesian axis z and γ for
the helix curvilinear length per unit angular evolution φ. We
schematically depict the afore-introduced helix geometric para-
meters in Fig. 1:

The parameter b is related to the helix radius a through the
tangent of the angle θ (Eq. (1)), while the helix cross section radius
is denoted with r (Fig. 1). The Serret–Frenet curvilinear n, b, t basis
is thereupon given as [30]:
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The helix curvature and tortuosity named respectively as k and
τ are defined by means of the helix radius a and helix angle θ as
follows [30]:
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Finally, the curvilinear helix length ℓ of a non-unit angular
evolution φ and its projection on the Cartesian axis z, named h, are
related to the helix radius a and helix angle θ by the following
geometric relations [11]:

θ φ θ= ℓ = ℓ ( )h asin , cos 4

2.2. Helix structural response definition

We describe the helix structural response by means of three
Quantities of Interest (QoI), namely the axial force Fz and moment
Mz created along the Cartesian axis z and the radial force Fr. To

compute the effective structural response ⎡⎣ ⎤⎦F M Fz z r
T
, we distin-

guish between the mechanical loading contributions (e.g. axial,

torsional or radial strains) ⎡⎣ ⎤⎦F M Fz z r m

T
and the non-mechanical

loading contributions ⎡⎣ ⎤⎦F M Fz z r th

T
induced by thermal strains:
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In the linear superposition of Eq. (5), the thermal part con-
tribution (th) is subtracted from the mechanical part (m), as po-
sitive signed thermal and positive signed mechanical strains in-
duce opposite orientation force and moment resultants [31].

The structural response to mechanical strains is given in Ap-
pendix B. We hereby derive the helix thermal loading closed-form
stiffness expressions, relating the thermally induced force and
moment resultants of Eq. (5) to the applied thermal strains. To that

extent, we express the thermal part ⎡⎣ ⎤⎦F M Fz z r th

T
of Eq. (5) as the

multiple of a thermal loading stiffness matrix κth with the thermal

strain vector ϵ α α α= ϵ ϵ ϵ = Δ Δ Δ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T T T, , , ,th
x
th

y
th

z
th

th x th y th z , where αth

stands for the linear thermal expansion coefficient (considering an
isotropic thermal behavior with equal expansion coefficients) and
Δ Δ ΔT T T, ,x y z for the temperature changes along the Cartesian x , y
and z axes. The thermal QoI in Eq. (5) are thereupon expressed as:

Fig. 1. Helix geometry.
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