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a b s t r a c t

Journal bearings are still widely used, and – in combination with the omnipresent trend of light weight
construction – there is an increasing focus on transient behaviour. Therefore, the structure, or more
precisely, the aspect of rotordynamics has to be considered in conjunction with the hydrodynamics.
Existing tools either address rotordynamics accurately while simplifying the bearings, or they model the
bearings profoundly, including cavitation, but oversimplify the rotor to a point mass. The paper at hand
addresses an approach to close the gap between both worlds. Therefore, a cavitation algorithm for the
use in transient rotor dynamic applications is developed based on a regularised formulation of the Elrod–
Adams model. Due to the achieved smoothness of the cavitation boundary, the solution of the hydro-
dynamic task yields to a more robust and faster calculation with respect to the classical approach.
Therefore an application in transient simulations including rotor or multibodydynamic interactions
under arbitrary conditions is realizable. For validating purposes, other approaches as well as experi-
mental data were considered. The comparison shows an excellent agreement and additionally underlines
the numerical advantages. As a result, the influences of rotordynamic aspects like the shaft's time de-
pendent skew positioning can be considered and lead to a more precise representation of the system's
behaviour, e.g. bearing damping or minimal fluid film gap.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their simple configuration, journal bearings are widely
used in rotordynamics applications. For design and dimensioning
purposes, numerical investigations concerning steady-state load
conditions are state of the art. A lot of effort has been done in
order to get cavitation constraints coincident with conservation of
mass, leading to different implementations of the so-called JFO1

boundary conditions: Elrod–Adams algorithm [1–5], bi-phase al-
gorithm [6–9] and ALE2 approach [10–13], wherein the first
mentioned is commonly accepted and widely used.

In some cases, however, a steady-state investigation is in-
sufficient – making a transient analysis become mandatory. For
this purpose, and due to their rapidity, it is still common to use
short bearing approximations as well as look-up tables listing
bearing stiffness and damping coefficients [14–18]. Whereas the

first approach is not able to handle arbitrary boundary conditions,
the second is well developed based on the available cavitation
algorithms. The drawback of both is the negligence of damping
due to skew gaps generated by bending deflection of the shaft.

An alternative approach is based on a numerical solution of
Reynolds equation within the time integration scheme [5,19–21].
Most applications following this approach draw on the EHL3 the-
ory, considering the deformation of the housing. In this regard, the
rotor model is oversimplified to a mass point, but the procedure
still results in high computational costs due to the necessity of a
fine mesh for cavitation hand ling.

The approach presented here considers shaft and rotor mass
properties, including moments of inertia as well as shaft elasticity.
It utilises a numerical solution of the Reynolds equation with a
modified Elrod–Adams algorithm in order to limit the computa-
tional costs to an acceptable amount.

The main idea of Elrod and Adams was to introduce a universal
PDE4 combining the two complementary unknown fields, pressure
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p and film fraction ϑ, each of them associated with a part of the
bearing area. The partition depends on load as well as time, and it
is realised by a switch function ∈ [ ]g 0, 1 , whereas the discretisa-
tion yields a stepwise nonlinear system of equations, which is
usually solved by fixed-point iteration.

In order to determine the cavitation boundary sufficiently ac-
curate, the bearing area has to be meshed relatively fine, which
leads to high numerical efforts. Nevertheless, oscillations can oc-
cur during the iteration process due to the heaviside-type switch
function g [22–24].

The modified Elrod–Adams model presented here uses a reg-
ularised switch function to avoid oscillations and to reduce the
number of unknowns. Furthermore, a Newton–Raphson algorithm
can be utilised to solve the nonlinear equations more efficiently.

First, in Section 2 the original approach is described briefly,
followed by an introduction to the modifications. Afterwards, the
algorithm will be validated under steady-state load, and a con-
vergence study is performed, Section 3. Since the scope of the
paper is the dynamic behaviour of bearings, Section 4 addresses an
additional validation under transient load in the case of a parallel
gap. In conclusion, the modified Elrod–Adams model is applied to
a rotor supported in journal bearings, leading to skew gaps de-
pending on time and load, Section 5.

2. Hydrodynamic theory

2.1. Governing equations

The purpose of hydrodynamic models in a rotordynamic ana-
lysis is to provide bearing forces and moments resulting from the
pressure distribution p, which can be calculated by solving the
Reynolds equation
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To address the cavitation problem, the bearing area is divided into
two domains – the pressurised Ωp and the cavitational Ωϑ. The
first one is associated with a completely filled gap ϑ = 1 and the
unknown pressure p. In the latter, the pressure is supposed to be

=p pcav, while ϑ has to be determined.

Elrod and Adams, by use of

β= + ϑ ( )p p ln , 2cav

came up with the idea to establish the film fraction ϑ as unique
unknown, valid in both regions in order to satisfy the JFO cavita-
tion constraints [1]. In addition, they introduced the switch func-
tion (ϑ)g , resulting in the nonlinear PDE
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The drawback of this formulation is the weak dependency (ϑ)p in
Ωp, which can be avoided – following an idea of Shi and Paranjpe
[5] – by introducing a universal unknown Π containing the non-
dimensional pressure P as well as the film fraction ϑ
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The switch function g then becomes
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whereby Eq. (3) reads – under consideration of nondimensional
relations according to the nomenclature – in terms of Π, as fol-
lows:
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The remaining boundary conditions can be stated as
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Nomenclature

Roman symbols

d diameter
l length
g switch function, gravity
h film width
H nondimensional film width (= )h

cp pressure
P nondimensional pressure

η ω
ψ(= )p 2

t time
T nondimensional time ω(= )t
um effective surface velocity

ω ω(= − )d
2 2

shaft shell

x circumferential coordinate
X nondimensional coordinate (= )x

d
2

y axial coordinate
Y nondimensional coordinate (= )y

d
2

 stiffness matrix
 mass matrix
 gyroscopic matrix

 damping matrix
 conductivity matrix
ψ relative clearance (= )c

d
2

β bulk modulus of oil
β̄ nondimensional bulk modulus of oil

β
η ω

ψ(= )2

ω rotational speed
η dynamical viscosity of oil
ϑ film fraction
Π pressure-like function
Π⁎ regularisation parameter
Ω computational domain Ω Ω( = + )ϑp

ε relative eccentricity (= )e
d

2

ψs relative segment clearance (= − )d d
d

s

ρ density of shaft
ν Poisson's ratio
E Young's modulus
 Jacobian
 right-hand side vector
 vector of unknowns
 force vector
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