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a b s t r a c t

This paper investigates the torsional wrinkling behavior of an annular thin film. Non-dimensional
nonlinear von Karman buckling equations are established, which are solved by introducing a compound
series method to acquire the post-wrinkling characteristics. The proposed theoretical model can accu-
rately predict the critical wrinkling behavior and post-wrinkling characteristics of the annular thin film,
which are verified by the experimental measurement based on the digital image correlation (DIC)
technique. The theoretical results show that the post-wrinkling stress is intimately associated with the
wrinkle configuration in the post-wrinkling stage. The hoop post-wrinkling stress along the wrinkle
texture direction of the annular thin film dictates the wrinkle evolution. The wrinkle number remains
constant in the elastic regime, which is determined by the critical buckling load factor. The results
provide good guides to tune or control the wrinkles in the thin film.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wrinkling is a common phenomenon that may occur in a thin
film as long as a slight compressive stress is present. The first
discussion on the wrinkling phenomenon could date back to 1929,
when Wagner carried out a series of wrinkling calculations on a
thin metal sheet under shearing [1]. Recently, thin film wrinkling
has provoked extensive research owing to its importance in a wide
variety of applications, ranging from deployable gossamer space-
craft [2,3], biological tissues [4–6], to nanoscale devices [7–11].
Note that wrinkling, on one hand, is a nuisance in some cases. For
example, in the aerospace industry researchers raise serious con-
cerns about the adverse effects of wrinkles on the performance
and longevity of a thin structural element [2,12], because the onset
of wrinkles may significantly influence its static configuration and
dynamic behavior [3,13–16]. On the other hand, wrinkling may
also be used as an efficient way of tuning the properties of a
nanoscale material [7,17–21], particularly its mechanical proper-
ties [22,23]. In this context, it is of great importance to understand
the mechanics of thin film wrinkling in areas where reliable con-
trol and tuning of wrinkles are required.

In principle, wrinkling refers to the local buckling instability of
a thin film that has a small but finite bending stiffness. Thin film
wrinkling is generally considered as a bifurcation from plane stress
deflection to out-of-plane bending-type deflection. It is found that
wrinkles are in constant development under increasing external
load in the post-wrinkling stage [15,24–27]. As such, an efficient
analytical model capable of dealing with large deflection, based on
the nonlinear post-buckling theory, is in vital demand, aiming to
exactly capture the wrinkle characteristics of a thin film in the
post-wrinkling stage.

Thus far, a number of numerical studies, mainly based on
nonlinear shell buckling simulations, have been conducted for the
wrinkling calculations [12,15,24–26,28–30]. In these numerical
studies, the thin shell elements are exclusively assumed to have
bending and membrane stiffness that facilitates efficient deduc-
tion of detailed wrinkle characteristics such as wrinkle number,
amplitude and wavelength. It is worth mentioning, however, that
a singular tangent stiffness matrix is regrettably encountered near
the bifurcation point, which may result in poor convergence of the
wrinkling calculations. Moreover, the wrinkling calculations based
on nonlinear shell buckling simulations are highly mesh-
dependent and sensitive to the initial imperfection, which are
not beneficial for the accurate prediction of the wrinkle char-
acteristics in the post-wrinkling stage [15,25,28,31,32]. Therefore,
theoretical studies on the post-wrinkling behavior of a thin film
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are in urgent need, enabling accurate prediction of the wrinkle
characteristics in the post-wrinkling stage.

Unfortunately, there are very few theoretical studies on the
post-wrinkling behavior of a thin film at present [33–36], in
contrast to the numerous linear buckling theoretical studies
[37–43]. It should be stressed, however, that although the linear
buckling theory can efficiently identify the eigenmode and cri-
tical wrinkling load of a thin film, it fails to determine the wrinkle
amplitude where the nonlinear effect should be taken into
account. Coman and coworkers [38–42] found that the wrinkle
wavelength remained the same as there was no “branching” in
the initial post-wrinkling stage, which was in good agreement
with what was concluded by Geminard et al. [37]. As suggested
by Wang et al., [25,28,44] thin film wrinkling was regarded as
out-of-plane bending-type deflection induced by the post-
wrinkling stress, and was a kind of typical nonlinear large
deflection that could be found in various special applications
[3,8,15,25,35,45]. In consequence, the nonlinear large deflection
of a wrinkled thin film, i.e., thin film wrinkling, should be
described by the nonlinear theory proposed by von Karman. The
approximate solutions to von Karman’s equations can be
obtained by using perturbation methods [38,39], asymptotic
expansions [40–42], finite difference methods [33–36], or
asymptotic numerical method [46,47].

Thus far, little attention has been paid to the theoretical studies
on the post-wrinkling behavior of a thin film, mainly owing to the
difficulties in the mathematical modeling and solution towards this
mechanical problem. Besides, experimental evidence has proven
that the wrinkle characteristics predicted by the linearized Donnell-
von Karman bifurcation theory are far from being satisfactory
[26,28,32]. Given the above review, hereby we aim to develop a
nonlinear theoretical analysis for the post-wrinkling of a stretched
annular thin film by extending the present work [40,41] to the post-
wrinkling stage. The stress state is not simply a hoop periodic
function in the post-wrinkling stage, but a function coupled with
the wrinkling configuration. Nonlinearity of modeling and solution
in the post-wrinkling stage become more prominent. In order to
have a more accurate prediction of post-wrinkling characteristics,
this paper is structured as follows: In Section 2, non-dimensional
nonlinear von Karman buckling equations are established, which
are solved by introducing a compound series method to acquire the
post-wrinkling characteristics of a thin film, including post-
wrinkling stress and wrinkle configuration intimately associated
with it. In Section 3, experiments are conducted on the torsional
wrinkling of an annular thin film to verify the prediction accuracy of
the proposed theoretical model. In Section 4, the critical wrinkling
load, post-wrinkling stress distribution and variation, and detailed
wrinkle characteristics are predicted based on the theoretical
model. The conclusions are drawn in the end.

2. Mathematical description of the mechanical problem

At first, we consider a model of an annular thin film under
inner torsion and outer tension, as illustrated in Fig. 1. As seen
from the figure, the inner and outer radii of the annular thin film
are denoted as r1 and r2, respectively. The outer boundary of the
annular thin film is stretched initially, resulting in a uniform dis-
placement field of u0. Meanwhile, a torque M is exerted on the
inner boundary of the annular thin film. A cylindrical system of
coordinates r;ϕ; z

� �
is applied to define all variables associated

with this mechanical problem.

2.1. Nonlinear wrinkling of an annular thin film

Thin film wrinkling, in its nature, is a nonlinear, large out-of-
plane deflection that is intimately associated with a post-
bifurcation stress field. Therefore, the physical framework of thin
film wrinkling, different from that addressed by the linear bifur-
cation analysis where the stress field of a base state of interest is
considered, should be clarified by the nonlinear theory proposed
by von Karman.

Nonlinear von Karman buckling equations taking into account
of large deflection can be described as follows:
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where E and v are Young’s modulus and Poisson’s ratio, respec-
tively. h is the thickness of the annular thin film. D¼ Eh3=12
1�v2
� �

is the bending stiffness of the annular thin film. ∇2

represents the Laplace operator in the polar coordinates. w r;φ
� �

is
the out-of-plane displacement, and Φ r;φ

� �
is the stress function.

Several non-dimensional parameters, as defined by the fol-
lowing formula, are substituted in Eqs. (1a) and (1b):
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We can obtain the following two equations:
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The boundary conditions are as follows:

w ρ;φ
� �jρ ¼ η ¼w ρ;φ

� �jρ ¼ 1 ¼ 0; ∂w ρ;φ
� �

=∂ρjρ ¼ η

Fig. 1. A model of an annular thin film under inner torsion and outer tension.
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