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a b s t r a c t

This paper presents an approximate closed-form solution for the free-vibration problem of thin-walled
clamped–clamped cylinders. The used indefinite equations of motion are classic. They derive from
Reissner's version of Love's theory, properly modified with Donnell's assumptions, but an innovative
approach has been used to find the equations of natural frequencies, based on a solving technique similar
to Rayleigh's method, on the Hamilton's principle and on a proper constructions of the eigenfuctions.

Thanks to the used approach, given the geometric and mechanical characteristics of the cylinder, the
model provides the natural frequencies via a sequence of explicit algebraic equations; no complex
numerical resolution, no iterative computation, no convergence analysis is needed.

The predictability of the model was checked both against FEM analysis results and versus experi-
mental and numerical data of literature. These comparisons showed that the maximum error respect to
the exact solutions is less than 10% for all the comparable mode shapes and less than 5%, on the safe side,
respect to the experimental data for the lowest natural frequency.

There are no other models in the literature which are both accurate and easy to use. The accurate
models require complex numerical techniques while the analytical models are not accurate enough.
Therefore the advantage of this novel model respect to the others consists in a best balance between
simplicity and accuracy; it is an ideal tool for engineers who design such shells structures.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structural elements similar to thin-walled cylinders are widely
used in several engineering fields; for example, cylindrical shell-
like structures exist in pipelines, submarine hulls, aircraft fuse-
lages and missiles. During mechanical processing needed for their
manufacture or during their normal use, these elements are often
stressed by time-varying forces; consequently, there is a need to
characterize the vibratory behaviour to optimise the design and
the production process.

The present paper is composed of five sections and an appen-
dix. This section provides a short historical review of the numer-
ical and analytical models of free vibrations of thin elastic shells.
Section 2 presents the differential equations of motion. In Section
3 and in Appendix the mathematical basis of the present model is
outlined, and the key equations are derived. A detailed analysis of
the results, together with several comparisons with other models

and experimental data, is presented in Section 4, followed by
conclusions in Section 5.

In the literature, there are several theories with various
assumptions and simplifications about the vibrations of thin
elastic shells; these theories typically are based on Love's indefi-
nite equilibrium equations derived at the end of 19th century [1].
The research on this topic intensified during the 1960 s and 1970 s
[2] and was further developed in the last two decades [3,4]. Over
the years, linear models valid for small deformations were devel-
oped, along with non-linear models [5] also valid for large
deformations.

In particular, the natural vibrations of thin-walled circular
cylindrical shells were extensively analysed both from a theore-
tical point of view [6–13] and from an experimental point of view
[6,7,11]; a recently published study aimed to adapt the classical
theories to new applications based on carbon nanotubes [14].
However, due to the complexity of the problem, the exact solution
of indefinite equations of motion only exists for circular cylindrical
shells with two opposite shear diaphragm edges [12]. With other
boundary conditions, the integration of these equations is gen-
erally performed with the aid of numerical methods; only in a few
cases the solution has been found analytically, thanks to the
introduction of special simplifying assumptions, but to the
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detriment of accuracy or applicability domain. Arnold and War-
burton [6] were among the first to study this type of problem;
using the energy method and Timoshenko's relationships [15],
they obtained a closed-form approximation of the natural fre-
quencies for the case of simply supported edges. Koval and Cranch
[7] studied the case of clamped–clamped edges using Donnell's
equations [16] and provide an analytical solution as in this paper,
but their model gets a limited applicability domain due to several
oversimplifications. The same issue was addressed by Smith and
Haft [8] using Flügge's equations [17] decoupled by Yu [18] but in
this case as well, the problem was only solved numerically. Also
Xuebin [19] used the Flügge's equations but introducing a new
form of variables separation for arbitrary boundary conditions and
applying the Newton–Raphson iteration method for the resolution
of the frequency equation. Chung [20], using the Sanders' shell
equations, obtained the expression of the frequency equation for
any kind of boundary condition, but with the aid of iterative
numerical method. Callahan and Baruh [9] obtained the natural
frequencies analytically for several boundary conditions using
Junger and Feit's equations [21]. However, the calculation was
based on coefficients dependent on the constraints of geometry
and material characteristics, which can be determined only
numerically; therefore, this is not really a closed-form model.
Wang and Lai [10] introduced a novel approach based on the wave
theory and on the well-known Love's equations, which allowed
them a closed-form resolution for different boundary conditions,
clamped–clamped included as in this paper; however, the solution
results inaccurate for the simpler mode shapes, as occurred for the
Koval and Cranch [7] model. Pellicano [11] conducted both theo-
retical and experimental analyses on linear and nonlinear

vibration based on the Sanders–Koiter theory [22–23] for different
boundary conditions; in this case, the analysis was also performed
using numerical resolution techniques. Recently, further approa-
ches to the problem were developed: Xing et al. [12], working
from the Donnell–Mushtari theory [24], resolved the problem for
different boundary conditions via the variables separation method
associated with the Newton iterative method; moreover, both Xie
et al. [13] and Zhang et al. [25] analysed different boundary con-
ditions using the Goldenveizer–Novozhilov theory [26] but with
different numerical approaches, the former used the Haar wavelet
numerical method, while the latter used the local adaptive dif-
ferential quadrature method. Khalili et al. [27] presented a for-
mulation of 3D refined higher-order shear deformation theory for
the free vibration analysis of simply supported-simply supported
and clamped–clamped cylindrical shells and the solutions are
obtained using the Galerkin numerical method.

The literature review found no models for the free-vibration
problem of clamped–clamped cylinders, which are both accurate
and easy to use. The accurate models require complex numerical
techniques while the analytical models are not accurate enough.
The novel model presented here, in contrast, combines good
accuracy with ease and speed of calculation: it carefully provides
the natural frequencies via a simple sequence of explicit algebraic
equations; no complex numerical resolution, no iterative compu-
tation, no convergence analysis is needed, unlike other models in
the literature or FEM analysis.

The used indefinite motion equations were classic, but an
innovative approach was used to find the equations of natural
frequencies based on a solving technique similar to Rayleigh's

Nomenclature

a mean radius of the cylinder [m]
A amplitudes of the displacement functions [m]
D bending rigidity of the thin wall [N m]
E Young's modulus [N m�2]
f natural frequency [Hz]
F resultant force vectors per unit length [N m�1]
G shear modulus [N m�2]
H Hamiltonian action [J s]
h wall thickness of the cylinder [m]
k curvatures of the reference surface [m�1]
K extensional rigidity of the shell wall [N m�1]
l length of the cylinder [m]
L Lagrangian function [J]
m number of longitudinal half-waves
M resultant moment vectors per unit length [N]
M moments, per unit length, acting on the infinitesimal

element [N]
n number of circumferential waves
N forces, per unit length, acting on the infinitesimal

element [N m�1]
Q transverse shear forces, per unit length, acting on the

infinitesimal element [N m�1]
r radial unit vector [m]
r radial coordinate [m]
R1, R2, R3 coefficients of the frequency equation
s circumferential unit vector [m]
s circumferential coordinate [m]
t time [s]
u displacements of the reference surface [m]
W virtual work [J]

x longitudinal unit vector [m]
x longitudinal coordinate [m]
X dimensionless longitudinal coordinate
α model dimensionless parameter (see Eq. (26))
β rotations of the tangents to the reference surface [rad]
γ shear deformation of the reference surface
γ(ζ) shear deformation of a generic point
Δ dimensionless frequency factor
ε normal deformations of the reference surface
ε(ζ) normal deformations of a generic point
ζ radial distance of a generic point from the reference

surface [m]
η1;η2 model dimensionless parameter (see Eqs. (21) and

(22))
θ dimensionless circumferential coordinate [rad]
μ model dimensionless parameter (see Eqs. (14) and

(17))
ν Poisson's ratio
ξ model dimensionless parameter (see Eq. (20))
ρ material density [kg m�3]
τ torsion of the reference surface [rad m�1]
φ model dimensionless parameter (see Eq. (26))
Ψ model dimensionless parameter (see Eq. (12))
ω circular frequency [rad s�1]

Subscripts

s circumferential direction
r radial direction
x longitudinal direction
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