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a b s t r a c t

For the purpose of understanding the vibrational characteristics of moving plates in continuous hot-dip
galvanizing process, the linear and nonlinear free vibrations of an axially moving rectangular plate
coupled with dense fluid having a free surface are investigated. The fluid is assumed to be incompres-
sible, inviscid and irrotational in this study. Effect of free surface waves of the fluid is taken into account
in the analysis. The classical thin plate theory is adopted to formulate the equation of motion of the
vibrating plate. The velocity potential and Bernoulli's equation are used to describe the fluid pressure
acting on the moving plate. The effect of fluid on the vibrations of the plate may be equivalent to added
mass of the plate. The system is solved by applying directly the method of multiple scales to the gov-
erning partial-differential equations and boundary conditions. Results show the immersion depth,
moving speed, fluid-plate density ratio, stiffness ratio and aspect ratio all have significant effects on the
natural frequencies of the immersed moving plate. The nonlinear frequencies of the plate-fluid system
are influenced by initial amplitude, moving speed and nonlinear coefficient. It is also shown that the 1:1
and 1:3 internal resonances of the immersed moving plate can occur at certain speeds. Owing to the
internal resonance, amplitude ratio of the two internal resonance modes shows multi-value character-
istics. With the increase of nonlinear coefficient, the internal resonance phenomenon becomes more and
more intense.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic characteristics of axially moving continuum have
interested many researchers in the recent 20 years. However,
hydroelastic vibrations of axially moving continuum coupled with
dense fluid are still scarce and the dynamical behaviour of this
coupled system still need clarification.

The one-dimensional model for axially moving continuum can
be found quite abundant in the literature. The literature review
work on the dynamics of axially moving continuum in vacuo has
been given in [1,2] and will not be repeated here. However, it is
necessary to refer to some fundamental and some recent con-
tributions. Briefly, nonlinear dynamics of one-mode approxima-
tion of an axially moving beamwith varying speed was carried out
by Ravindra and Zhu [3]. Öz and Pakdemirli [4] considered an
Euler–Bernoulli beam having different flexural stiffness values and
moving with harmonically varying velocities. They investigated
principal parametric resonances and combination resonances of
this model. By including stretching effect of the beam, Öz et al. [5]

also analyzed the non-linear vibrations of an axially moving beam.
Pellicano and Vestroni [6] investigated the bifurcation and stability
of a simply supported axially moving beam subjected to an axial
transport of mass. Then, they studied the dynamic response of this
model subjected to a transverse load in the super-critical speed
range [7]. Bifurcation and chaos dynamics were especially dis-
cussed in detail in this study. Riedel and Tan [8] studied the non-
linear response of an axially moving strip with coupled transverse
and longitudinal motions. By using different mode expansions,
Marynowski [9,10] investigated numerically the instability and
bifurcation of axially moving viscoelastic beams. Yang and Chen
[11] examined numerically bifurcation and chaos in transverse
motions of accelerating viscoelastic beams with geometric non-
linearity. Employing the Timoshenko model, Yang et al. [12]
investigates dynamic stability in transverse parametric vibrations
of an axially accelerating tensioned beam on simple supports. The
Galerkin method and the method of averaging were used in their
study. Combining the multidimensional Lindstedt–Poincaré
(MDLP) method and Galerkin method, Chen et al. [13] investigated
the forced response of an axially moving beam with internal
resonance between the first two transverse modes. Zhang and
Song [14] studied higher-dimensional periodic and chaotic oscil-
lations for a parametrically excited viscoelastic moving belt with
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multiple internal resonances. The parametric vibration and stabi-
lity of an axially accelerating string guided by a partial non-linear
elastic foundation was investigated analytically by Ghayesh [15].
Chen et al. [16] investigated the bifurcations and chaotic motions
of higher-dimensional nonlinear systems for the nonplanar non-
linear vibrations of an axially accelerating moving viscoelastic
beam. Based on Rayleigh beam theory, Chang et al. [17] delved into
the vibration and stability of an axially moving beam by using
finite element method. Ding and Chen [18] studied numerically
the natural frequencies of planar vibration of axially moving
beams in the supercritical ranges. Then they investigated steady-
state periodical response for an axially moving viscoelastic beam
with hybrid supports via approximate analysis with numerical
confirmation [19]. Huang et al. [20] examined the nonlinear
vibration of an axially moving beam subject to periodic lateral
force excitations; they paid attention to the fundamental and sub-
harmonic resonances and used the incremental harmonic balance
method. The nonlinear vibration and control of an axially moving
steel strip under aerodynamic excitations was carried out by Li
et al. [21]. They examined the influences of variable production
parameters on the vibration amplitude near the aerodynamic
excitations in the study. Yao et al. [22] probed into the multi-pulse
global bifurcations and chaotic dynamics for the nonlinear, non-
planar oscillations of parametrically excited viscoelastic moving
belts using an extended Melnikov method in the resonant case.

Compared with the one-dimensional model for axially moving
continuum, researches using two-dimensional models are less.
Based on the Mindlin–Reissner plate theory, Wang [23] developed
a mixed finite element formulation for a moving orthotropic thin
plate. By using the Kelvin-Voigt model, Zhou and Wang [24] dis-
cussed numerically the natural frequencies of axially moving vis-
coelastic rectangular plates with parabolically varying thickness.
Hatami et al. [25] developed an exact finite strip method to ana-
lyze the free vibration of axially moving viscoelastic plates. Bani-
chuk et al. [26] studied the loss of stability of axially moving plates
in a two-dimensional formulation. The bending resistance and in-
plane tension were taken into account. Tang and Chen [27] studied
the natural frequencies, modes and critical speeds of in-plane
moving rectangular plates on different supports. The complex
natural frequencies for linear free vibrations and bifurcation and
chaos for forced nonlinear vibration of an axially moving

viscoelastic plate was investigated by Yang et al. [28]; the solution
was obtained by using the finite difference method. Luo and
Hamidzadeh [29] studied the buckling stability and post-buckling
chaos of an axially moving plate by using Galerkin method and
then numerical method. Based on von Kámán plate theory,
Ghayesh et al. [30] investigated numerically the geometrically
nonlinear vibrations and stability of an axially moving plate sub-
jected to an out- of-plane excitation load. Based on Donnell's
nonlinear shallow-shell theory, Wang et al. [31] introduced an
improved nonlinear model to study the nonlinear dynamics of an
axially moving thin circular cylindrical shell. They examined par-
ticularly the 1:1:1:1 internal resonance phenomenon of the
structure.

All the works cited above considered the moving continuum in
vacuum only, or, if there was fluid around the structure, it was
ignored. However, it is known that the axially moving continuum
always work in the dense fluid in some areas of engineering, such
as the continuous hot-dip galvanizing process. Continuous hot-dip
galvanizing process was first adopted by the United Kingdom in
the 1930s, which now has been widely used in the production of
auto sheet in the world. This process is shown in Fig. 1. In the
continuous hot-dip galvanizing process, significant vibrations of
the plate between touch rolls and stabilizing rolls, as seen in Fig. 1,
can often occur. This worsens the local hot-dip galvanizing envir-
onment and results in the vibration stripe of the plate. In order to
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Fig. 1. Continuous hot-dip galvanizing process.

Nomenclature

a Length of the plate
b Width of the plate
d Height of fluid domain
D Flexural rigidity of the plate
E Young's modulus of the plate
h Thickness of the plate
h1 Fluid level below the plate surface
h2 Fluid level on top of the plate surface
k The nonlinear coefficient
m Number of half-waves in the x-axis direction
Mx, My, Mxy The internal moment resultants
n Number of half-waves in the y-axis direction
N0 Pretension per unit width in the axial direction
Nx, Ny, Nxy The internal force resultants
pL Dynamic pressure on the lower fluid-plate interface
pU Dynamic pressure on the upper fluid-plate interface
t Time
u, v, w Displacements of mid-plane of the plate in the x, y, z

direction, respectively

V Axially moving speed of the plate
αmn, βmn Amplitude and phase angle of the mnth mode
αmn0 , βmn0

Initial amplitude and phase angle of the mnth mode
Δp Dynamic pressure difference of the fluid
εx, εy, γxyNormal strains in the x and y directions, as well as

inplane shear strain at an arbitrary point of the plate,
respectively

ε0x , ε
0
y , γ

0
xy The middle-surface strains

ζ The dimensionless stiffness ratio
μ Poisson ratio of the plate
ξ The dimensionless aspect ratio
ρ The dimensionless density ratio
ρf Mass density of the fluid
ρp Mass density of the plate
σx, σy, τxy Normal stresses in the x and y directions, as well as

inplane shear stress, respectively
ϕðx; y; z; tÞ The velocity potential function
χx, χy, χxy Changes in the curvature and torsion of the middle

surface in the corresponding coordinate directions.
ωmn The mnth linear natural frequency
Ωmn The mnth nonlinear frequency

Y.Q. Wang et al. / International Journal of Mechanical Sciences 110 (2016) 201–216202



Download English Version:

https://daneshyari.com/en/article/7174142

Download Persian Version:

https://daneshyari.com/article/7174142

Daneshyari.com

https://daneshyari.com/en/article/7174142
https://daneshyari.com/article/7174142
https://daneshyari.com

