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a b s t r a c t

Surface development origins from the cloth-making and computer graphics without consideration of the
thickness, involving nonlinear optimization and constraints. Moreover the research of surface develop-
ment mainly focuses on the planar development. In this paper, the development of the non-developable
sheet to planar, singly-curved and doubly-curved surface patterns is investigated. An optimal developing
algorithm is formulated to minimize the strain energy required for the deformation of the sheet, in which
an orthogonal curvilinear coordinate system is used for three target patterns to simplify the constraints
for the developing process, resulting in an unconstrained quadratic optimization. Both shell element and
solid element are utilized in the finite element analysis. Similar developed results are obtained for planar
and spherical patterns by using these two types of elements. But for the cylindrical pattern, the solid
element model gives more accurate result due to no contribution of the shell element to the translation
of the rotational freedom.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering structures have three-dimensional (3D)
surfaces that are fabricated from a planar, singly-curved, or even
doubly-curved shape sheet. The first step of the fabrication in the
process is the development of this 3D surface into a planar/singly-
curved/doubly-curved shape so that the size of the initial shape
(pattern) can be determined and the strain distribution required to
form the shape can be estimated. 3D surfaces can be divided into
two kinds of shapes, namely the developable surfaces and the
non-developable surfaces. In general, the developable surfaces can
be developed into a flat plate without membrane deformation,
whereas the non-developable ones cannot be done without
membrane deformation [1]. The non-developable surfaces (also
called “doubly-curved surfaces”) are widely used in cloth-making,
ship-building and aerospace industries.

Current methods or algorithms for 3D freeform surfaces
development are mainly based on the concept of optimized strain
energy. Maillot et al. [2] established an energy model for flattening
problem by polygonizing 3D surfaces and dealing it as a spring net,
and then a minimization process was taken to reduce distortion
during the surface development process. An energy-based flat-
tening method can save both the material and energy needed in

manufacture and avoid any unnecessary distortion in flattening
process.

Yu et al. [3] presented a surface development approach in the
help of differential geometry theory. They utilized the first and
second fundamental form of the surface to express the shape
before and after deformation. The approach described the problem
as an optimization of the total strain energy with the constraint of
zero Gaussian curvature after the deformation. Liu and Yao [4]
used their algorithms to develop saddle and pillow shapes to a
plane, in which the optimization problem involves multi-variables
and multi-nonlinear constraints. However, the sophisticated
mathematical description and its time-consuming computations
limit its application. Moreover, the thickness is not taken into
account in these methods.

Liang and Bin [5] came up with a flattening method, in which a
subdivision was initially implemented to generate a discretized
modal for a 3D surface and then all the nodes were forcibly
unfolded onto a plane by unconstrained and constrained flattening
methods. A spring-net model was adopted to approximately
simulate the deformation energy and then an iterative process
with the restrictions was employed to reduce total energy in
flattening process. Liu et al. [6] employed an energy-based spring-
mass model [7] and made some improvements in overlapping
correction. The spring constant was assumed to be a constant for
all springs in their model. Cai et al. [8] also introduced a planar
flattening method for doubly-curved surface by minimizing the
differences of each edge of the discretized elements before and
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after the development with necessary geometric constraints. This
method reduces the 3D characteristic of original surface, which is
different from many other methods used in literatures [5,6]. Also,
this method takes the thickness of the sheet into account by
considering the volume conservation of the element. However, the
energy models in these studies are not exactly estimated because
the ignorance of the shear stiffness and the hypothesis of constant
spring constant which result in some errors in the energy
estimation.

Ryu and Shin [1] adopted the classical elastic theory of shell with
relatively large deformation to model the flattening process when
using the minimization of total strain energy with nonlinear con-
straints. Different constraints were chosen for the cold and thermal
forming of sheet metal. The thickness of sheet was also considered
by dividing the strain into two parts: in-plane strain and out-of-
plane strain, corresponding to membrane and bending strains
respectively. However, the functions of optimization and constraints
are very complicated and highly nonlinear. Cheng and Yao [9]
analyzed the development of the doubly-curved surface using a
commercial software package, which can save the computing time.
They also proved that an elastic assumption is reasonable in
developing process. However, only planar pattern is investigated in
their work. In fact, the rolled sheets, which are singly-curved, are
very common as initial blanks in the shipbuilding.

The literature survey shows that more refinements are still
needed for surface development methods for sheets. Many current
methods just regard flattening problem as a geographical problem
because they origin from the fields like clothing [10,11] or computer
graphics [12], in which the thickness of the surface is not taken into
account. As the feasibility of energy-based developing models has
been validated by many researches, energy-based approach is also
adopted in this paper. Due to the inaccuracy in energy estimation of
the spring-net model, FE method and elasticity theory are applied in
this study to calculate strain energy and an optimization model is set
up with geometrical constraints. Given the fact that rolled cylindrical
plates are very common as the initial configuration for doubly-
curved shapes in line heating of shipbuilding plates, developing
processes from doubly-curved sheet to doubly-curved, singly-curved
and planar pattern are of significance in practice. However, there is
little research about developing from the doubly-curved shapes to
singly-curved or doubly-curved shapes. Inspired by differential
geometrical methods utilized in literature [3,4], this paper

establishes a pattern-dependent orthogonal curvilinear coordinates
system. In this way, complex constraint like zero Gaussian curvature
can be avoided and geometrical constraints can be largely simplified.
The present method is validated by developing a saddle sheet into
planar, cylindrical and spherical patterns (Fig. 1) using both shell and
solid elements.

2. Description of the problem

The doubly-curved surfaces are defined as the surfaces that
have nonzero Gaussian curvature in at least some area. They have
two nonzero principle curvatures and are not developable. In
contrast, the singly-curved surfaces have only one nonzero prin-
ciple curvature and they are developable. The planar surfaces are
the surfaces with two zero principle curvatures. Because the
development process of the doubly-curved shapes involves
membrane deformation such as stretching and shrinking, the
process is not unique. Thus, a principle must be set to determine

Doubly-curved shape

Singly-curved shape

Plane

Doubly-curved shape

Developing Target patternDefined surface

Fig. 1. Three kinds of target patterns in developing process for 3D freeform surface.

Nomenclature

εα Lamé coefficient along α direction
H1 Lamé coefficient along α direction
εβ normal strain along β direction
H2 Lamé coefficient along β direction
εγ normal strain along γ direction
H3 Lamé coefficient along γ direction
γαβ shear strain in αβ surface
A value of H1 at the pattern surface
γβγs hear strain in βγ surface
B value of H2 at the pattern surface
γγα shear strain in γα surface
k1 curvature of α lines at pattern surface
u, v, w displacements in α, β, γ directions
k2 curvature of β lines at pattern surface
Vα, Vβ rotation angle of shell element's nodes with respect to

α and β axes
αi, βi, γi coordinates of element's ith node in α, β, γ directions

(in curvilinear coordinate system)

s, t, r natural coordinates after isoparametric
transformation

si, ti, ri s, t, r directional coordinates of element's ith node (in
natural coordinate system)

Υ Poisson's ratio
E Young's modulus
J Jacobian matrix of the isoparametric transformation
K element stiffness matrix
Ue element's strain energy
U total strain energy
Δ freedom array of nodes
N number of elements
Ni shape function for ith node of the element
D constitutive matrix of sheet metal
U array of nodes' displacements
B strain matrix of element
Rc radius of cylindrical pattern
Rs radius of spherical pattern
γc γ coordinate in cylindrical coordinate system
γs γ coordinate in spherical coordinate system
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