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a b s t r a c t

The extraordinary properties of carbon nanotubes enable a variety of applications such as axially moving
elements in nanoscale systems. For vibration analysis of axially moving nanoscale beams with time-
dependent velocity, the small-scale effects could make considerable changes in the vibration behavior. In
this research, by applying the nonlocal theory and considering small fluctuations in the axial velocity, the
stability and non-linear vibrations of an axially moving nanoscale visco-elastic Rayleigh beam are
studied. It is assumed that the non-linearity is geometric and is due to the axial stress changes. The
energy loss in the system is considered by using the Kelvin–Voigt model. The governing higher order
nonlocal equation of motion is derived by using Hamilton's principle and is analyzed by applying the
multiple scales and power series methods. Then the non-linear resonance frequencies and response of
the system are obtained. Considering the solvability condition, the stability of the system is studied
parametrically through Lyapunov's first method. An interesting result is that, considering the small-scale
effects changes the slope of the frequency response curves due to the fluctuations in the axial velocity,
considerably.

& 2015 Published by Elsevier Ltd.

1. Introduction

Due to the outstanding mechanical and physical properties of the
carbon nanotubes, wide range of applications in different areas of
nanotechnology exists. So, an extensive amount of studies have been
done on the dynamics and stability of the systems in the nanoscale,
such as fluid conveying carbon nanotubes [1–6]. In these studies the
effect of fluid velocity on the vibration and stability of carbon
nanotubes is studied. Because of the variety of the carbon nano-
tubes' applications, there is a need for further investigations on the
related fields. Carbon nanotubes are expected to become unstable at
higher axial velocities because of their high elastic modulus to the
density ratio. Some potential applications of axially moving nanos-
cale beams would be in spacecraft antennas, space elevator cables,
flexible nanorobotic manipulators, high speed vehicles and con-
veyors of nanoscale belts. For these usages, investigations on the
vibration of the axially moving nanoscale beams are of high
importance.

According to the macroscale applications of axially moving beams,
several studies have been done on the vibration of such systems.
These studies indicate that the axial velocity plays a great role in the
evolution of the researches conducted, because variable or constant
velocity, changes the elastic behavior of the beam. The dynamics of

these systems is studied in two sub- and super-critical axial velocity
regimes, the critical velocity is the limit between these two regimes,
in which instability occurs. On the other hand, axial velocity fluctua-
tions could cause instabilities even in a very low axial velocity [7–13].
Pakdemirli and Ulsoy [14] studied the parametric principal resonance
and combination resonance for any two modes of axially moving
string. They introduced a velocity function having small harmonic
fluctuations about a constant mean velocity, this velocity better
indicates many real systems. They showed that for velocity fluctuation
frequencies close to twice any natural frequencies, an instability
occurs, however for the velocity fluctuation frequencies close to zero
no instability happens. Ghayesh and Khadem [15] studied the effects
of the rotary inertia and temperature on the non-linear vibration and
stability regions of the steady-state response of an axially moving
beamwith time-dependent velocity. They showed that increasing the
rotary inertia, natural frequencies and critical velocities reduce. In
another similar study, Ghayesh and Balar [11] investigated the effects
of the geometric and mechanical parameters on the vibration
behavior, non-linear resonance frequencies and stability regions of
an axially moving beam.With further study on the technical literature
concerning these systems, one can find that a wide range of research
works has been done on the vibration and stability of axially moving
beams in the macroscale.

In the nanoscale, the molecular dynamic simulation could be
an appropriate method to study the vibration of systems, but this
method requires an enormous computation effort. So a continuum
molecular model is essential to study nanotechnology related

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2015.03.017
0020-7403/& 2015 Published by Elsevier Ltd.

n Corresponding author. Tel.: þ98 41 3339 2459; fax: þ98 41 3335 4153.
E-mail address: m_rezaee@tabrizu.ac.ir (M. Rezaee).

International Journal of Mechanical Sciences 96-97 (2015) 36–46

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2015.03.017
http://dx.doi.org/10.1016/j.ijmecsci.2015.03.017
http://dx.doi.org/10.1016/j.ijmecsci.2015.03.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.03.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.03.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.03.017&domain=pdf
mailto:m_rezaee@tabrizu.ac.ir
http://dx.doi.org/10.1016/j.ijmecsci.2015.03.017


problems. Nonlocal elasticity theory is one of the most important
models for studying nanoscale systems [16,17]. Based on this
theory, the scale effect is taken into account and in contrast with
classic models, stress at a point is a function of strain at all points
of the body. Lim et al. [18] studied the dynamic behavior of an
axially moving nanobeam with a constant speed. They investi-
gated the nonlocality effects on the natural frequencies and critical
velocities. Kiani [19] studied the longitudinal, transverse, and
torsional vibrations and stabilities of axially moving single-
walled carbon nanotubes with a constant speed. He used the
nonlocal elasticity theory and discretized the governing equations
of motions based on the Galerkin method. The discretization is
done by using the assumed mode-shape functions corresponding
the mode-shapes of the beam with zero axial velocity.

All the mentioned studies show that the instability due to the axial
velocity fluctuations, non-linear vibration and mode-shapes are not
investigated in the nanoscale. In this investigation, small-scale effects
on the vibration behavior and stability regions of a nanoscale beam
with a time-dependent axial velocity are studied. By directly applying
the multiple scales method to the higher order equation of motion
and using a power series method, natural frequencies, complex
mode-shapes and response of the beam are derived. Then by using
solvability condition, the stability of the steady-state response is
studied.

2. The equation of motion

As shown in Fig. 1, consider an axially moving nanoscale beam
with time-dependent velocity vðtÞ. The beam has the length l, mass
density ρ, cross sectional area A, cross-sectional area moment of
inertia J, Young's modulus E and initial tension P.

The kinetic energy based on Rayleigh beam model is given
by [13]

TðtÞ ¼ 1
2

Z l

0
ρA w;tþvw;x
� �2dxþ1

2

Z l

0
ρJ w;xtþvw;xx
� �2dx ð1Þ

where w x; tð Þ is the displacement in the z direction. In order to
take into account the geometric non-linearity due to large ampli-
tude, the Lagrangian strain is used as [20]

εx ¼ 1
2
w2

;x�zw;xx ð2Þ

The nonlocal beam theory is used to consider the small-scale
effects. This theory is an agreement between the atomic theory of
lattice dynamics and experimental observations. According to this
theory, the stress at a point of a body is dependent on the strain at
all the points in the body. For a homogenous isotropic material,
Eringen proposed the following equation as the nonlocal stress
field [16]:

σnlx �ðe0aÞ2σnlx;xx ¼ σlx ð3Þ
where σlx is the local axial stress, σnlx is the nonlocal axial stress, e0
is the material constant determined experimentally and a is the
characteristic length. The value of e0a should be calibrated by
using the molecular simulation results. This parameter is a func-
tion of the boundary conditions and molecular lattice [21,22].
Resultant nonlocal bending moment and axial force are defined as

Mnl ¼ �
Z
A
zσnlx dA; ð4Þ

Nnl ¼
Z
A
σnlx dA ð5Þ

Assuming the energy loss in the system based on the Kelvin–
Voigt model with viscosity coefficient η, considering the strain to

be a function of both time and space, and using Eq. (3)–(5), the
resultant nonlocal bending moment and axial force are obtained as
the following implicit forms:

Mnl� e0að Þ2Mnl
;xx ¼ EJw;xxþηJ w;xxtþvw;xxx

� � ð6Þ

Nnl� e0að Þ2Nnl
;xx ¼

1
2
EAw2

;xþηA w;xtw;xþvw;xw;xx
� � ð7Þ

These equations are obtained to derive new nonlocal equation
of motion. The potential energy due to the bending moment and
the axial force is

UðtÞ ¼ 1
2

Z l

0
Mnlw;xxdxþ

1
4

Z l

0
NnlþP
� �

w2
;xdx ð8Þ

Using Hamilton's principle, the following equation of motion
can be derived:

ρA w;ttþ2vw;xtþ _vw;xþv2w;xx
� �
�ρJ w;xxttþ _vw;xxxþ2vw;xxxtþv2w;xxxx

� �þMnl
;xx� Nnlw;xþPw;x

� �
;x
¼ 0 ð9Þ

In this research, the longitudinal vibration is ignored. So, for the
axial force one can obtain

Nnl
;xx ¼ 0 ð10Þ

Using Eqs. (6), (7), (9) and (10), and defining the following
dimensionless parameters:

wn ¼w
l
; ð11Þ

xn ¼ x
l
; ð12Þ

tn ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
P

ρAl2
;

s
ð13Þ

vn ¼ v

ffiffiffiffiffiffiffi
ρA
P
;

r
ð14Þ

τ¼ e0a
l

ð15Þ

vf ¼
ffiffiffiffiffiffiffi
EJ

Pl2

s
; ð16Þ

v1 ¼
ffiffiffiffiffiffi
EA
P

r
ð17Þ

γ ¼ ηJ

Pl3

ffiffiffiffiffiffi
P
ρA

s
; ð18Þ

ζ¼ ηA
PL

ffiffiffiffiffiffi
P
ρA

s
; ð19Þ

Fig. 1. Axially moving nanoscale beam with both ends hinged.
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