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a b s t r a c t

Laminated plates and photovoltaic panels are composed of three layers, whereas the core layer,
comprising the solar cells and their encapsulation, is more shear-compliant than the skin layers. First-
order shear deformation theories (FSDT) like the Mindlin theory are usually applied to these laminated
plates in combination with a homogenisation approach. If the differences in shear stiffnesses are too
strong, the FSDT may fail to predict the deformation behaviour accurately. This paper evaluates the
applicability range of FSDT to the laminated glass and photovoltaic panels. Furthermore, a user-defined
element is integrated with the subroutine User Element in Abaqus. This element utilises a homogenisa-
tion approach to determine the effective material parameters. To verify the results of the finite element
analysis, a closed-form series solution is applied. The attention is placed on the accurate representation
of the boundary layer effects that are important for the strength analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated plates and shells with skin layers from glass and a core
layer from Polyvinyl Butyral (PVB) are widely used in the civil
engineering and automotive industry [1–3]. Crystalline or thin film
photovoltaic modules currently available on the market are composed
from front and back glass or polymer layers and a solar cell layer
embedded in a polymeric encapsulant [4–6], cf. Figs. 1 and 2. Various
materials like Ethylene Vinyl Acetate (EVA) and PVB are applied to
encapsulate the solar cells [4]. In lightweight variants of photovoltaic
modules, the front and back plates are made from plastics. These skin
layers are connected together by a transparent Polyurethane (PUR), in
which the solar cells are embedded [7], cf. Fig 3.

During the operation, laminated glass plates and solar modules are
subjected to thermo-mechanical loadings, for example snow or wind
loads and daily or seasonal temperature changes. For the design of a
laminate, it is beneficial to analyse the suitability of materials like PVB,
EVA, or PUR for core layer or for embedding solar cells. These
encapsulates have to compensate different mechanical and thermal
strains of bottom and top layers. In order to predict stress and strain
states in the core layer, structural analyses of the laminate under the
thermo-mechanical loadings are required.

One feature of laminated glass plates or laminates used in
photovoltaic industry is the layered composite with relatively stiff

skin layers and relatively thin and compliant polymer encapsulant
layer. Let GS be the shear modulus of the glass skin layer and GC

the shear modulus of the polymeric core layer. The ratio of the
shear moduli μ¼ GC=GS for materials used in photovoltaic panels
is in the range between 10�5 and 10�2, depending on the type of
polymer and the temperature [4,7,8]. For the comparison, classical
sandwich panels are composed from materials with μ in the range
of 10�2 and 10�1. In addition, in classical sandwich structures the
face sheets are thin in comparison with the core, while in
photovoltaic applications the face layers are relatively thick and
the core is relatively thin.

Various structural mechanics models are available to analyse the
behaviour of laminated glass and photovoltaic panels. A widely used
approach for sandwich and laminate structures is the first-order shear
deformation theory (FSDT) [9,10]. This theory is based on the
assumption that the normals to the midsurface of the plate behave
like rigid bodies during the deformation. The local mechanical inter-
actions between cross-sections are characterised by forces and
moments. The advantage of this theory is the possibility to solve the
governing differential equations in a closed analytical form for plates
of various shapes and boundary conditions. Closed-form solutions or
approximate analytical solutions for plates according to the FSDT are
presented in [9–14] among others. Furthermore, plate or shell
elements available in standard finite element codes are usually based
on FSDT, e.g. [15]. A key step in the application of the FSDT is to
estimate effective characteristics of the layered system, in particular
the properties related to the transverse shear deformation. Closed-
form relationships are developed to find effective elastic stiffness of a
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laminate from the properties of the layers, e.g. [4]. To estimate the
effective transverse shear deformation in the inelastic range, various
numerical techniques are available [16,17].

Laminated glasses and photovoltaic panels can also be analysed
by the use of the three-dimensional theory of elasticity and
applying the finite element method for the numerical solution.
To this end, various types of continuum shell finite elements and
three-dimensional solid finite elements are available in commer-
cial codes, e.g. [15]. Due to extreme differences in material
properties of the constituents and the relatively low thickness of
the core layer, considerable numerical effort is required to obtain
the results with a desired accuracy [4,18]. In particular, care should
be taken for finite element meshing the core layer in order to
compute the transverse shear strains and the related stresses
accurately.

Recently, layer-wise theories have been developed and applied
in order to analyse laminated structures. Within the layer-wise
theory (LWT), balance and constitutive equations are derived for
individual layers. With constitutive assumptions for interaction
forces and compatibility conditions, a model for the layered
system is derived. For laminates with core layer from soft poly-
mers, LWT are presented in [1–4,7] for beams and in [19,20] for
plates. To derive the robust equations, the assumption is made that
glass skin layers deform according to the Bernoulli–Euler assump-
tions for beams or Kirchhoff assumptions for plates. The soft core
layer carries out the transverse shear stresses only, while the

bending moments and the membrane forces are neglected. In
[1,4,7], results of three point bending tests for beams with core
layers from various polymers are presented. Closed-form solutions
derived with the LWT agree well with the experimental data.
Furthermore, as shown in [3,4,7], the solutions according to the
LWT agree well with the results of the three-dimensional finite
element analysis. However, closed-form or semi-analytical solu-
tions to equations of LWT are presented only for simply supported
plates [19] and plate strips with various boundary conditions [20]
and the corresponding finite elements are not available in stan-
dard finite element codes.

The aim of this paper is to analyse the applicability of the FSDT
to laminated glasses and photovoltaic panels. To this end, we
address the following problems:

� For laminates with extreme differences in the stiffness proper-
ties of the constituents, the FSDT may fail to predict the
deformation properties of the laminate. This is demonstrated
in [4,7] for beams. For plates, a shear rigidity parameter should
be introduced to capture the validity range of the FSDT for glass
and photovoltaic panels. The values of this parameter must be
evaluated for EVA at different temperature levels.

� For laminates with soft core, accurate representation of bound-
ary layer effects is crucial for the strength analysis. In particular,
transverse shear stress and transverse shear deformation
should be predicted accurately in the vicinity of the plate
boundaries. To this end, results of the numerical analysis by
the finite element method must be compared with the closed-
form solutions.

2. First-order shear deformation theory

Governing equations: This paragraph introduces the governing
equations of the FSDT using a tensor notation. Tensors are represented
by bold upper-case letters, whereas bold lower-case letters are used
for vectors. Greek letters used for indices take the values 1 or 2. The
Einstein summation convention is applied if indices appear twice in
one term. In this paper, we apply the direct tensor calculus in the
sense of Gibbs [21] and Lagally [22]. Within this calculus, a second-
rank tensor is a finite sum of dyads of vectors, for example
A¼ a � bþc � dþ⋯. In analogy, a fourth-rank tensor A¼ a � b �
c � dþe � f � g � hþ⋯ is a finite sum of tetrads of vectors. In the
following, basic operations for dyads and tetrads are introduced:

a � bUc¼ αa; α¼ bUc ð1Þ

cUa � b¼ βb; β¼ cUa ð2Þ

a � bU Uc � d¼ αβ; α¼ bUc; β¼ aUd ð3Þ

a � b � c � dU Ue � f ¼ αβa � b; α¼ dUe; β¼ cUf ð4Þ
Operations (1)–(4) are generalised for tensors and used in many
textbooks on continuum mechanics and rheology, see for example
[23–25].

Fig. 4 shows a rectangular plate subjected to the uniform
surface load q¼ qn. The coordinate system with the orthonormal
basis e1; e2;n and the corresponding coordinates x1; x2; z is
applied. The position vector with respect to the current state r of
the points belonging to the plate midsurface is defined as follows:

r¼ Rþuþwn; ð5Þ
where R¼ xαeα is the position vector in the reference state, u is
the in-plane displacement vector and w is the deflection. The
cross-section rotations can be characterised by the vector
Θ¼Θαeα. The components Θα are illustrated in Fig. 4. Instead

Fig. 1. Crystalline solar module [4].

Fig. 2. Thin film solar module [4].

Fig. 3. Lightweight solar module, after [7].
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