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a b s t r a c t

A new stabilization scheme, based on a stochastic representation of the discretized field variables, is
proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical
simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the
response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and,
consistent with a class of such filters, gain-based additive correction terms are applied to the simulated
solution of the system, herein achieved through the element-free Galerkin method, in order to impose
a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated
through its applications to inviscid Burgers' equations, wherein shocks may develop as a result of
intersections of the characteristics, and to a gradient plasticity model whose response is often
characterized by a developing shear band as the external load is gradually increased. The potential of
the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient
variations in the response is thus brought forth.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Robust stabilization approaches are often needed in the numerical
simulations of systems whose response may contain sharp layers
of extreme gradient variations, as evidenced, for instance, in cases
that involve propagating an evolving shock. Yet another case, of
considerable significance in computational solid mechanics, is that
of gradient plasticity models whose numerical solutions may
contain such sharp layers that correspond to highly localized
deformation zones (e.g. shear bands). The need for stabilization
in all these cases is mainly owing to spurious oscillations in the
computed response profiles within or around such layers that
mainly occur due to an inadequate numerical resolution of the
fine-scaled response variations. In the context of a gradient
plasticity model, for instance, the spuriously wiggly nature of the
computed stress profiles is often ascribed to the weak formulation
(i.e. the discretized weighted residual) that fails to enforce the rate
form of the yield condition in a point-wise manner. A possible way
to obtain a relatively more locally monotone (i.e. less oscillatory)
solution could be diffuse or ‘smear out’ the steep gradients
enabling the numerical method to avoid over- and undershoots.

Indeed, except for the extreme cases of shocks with strict dis-
continuities, many of such apparent jumps in the response may be
locally approximated through higher order polynomials or Taylor
series expansions whilst retaining many terms. An implication of
the above observation is that mesh-free methods [1], using higher
order globally smooth shape functions, should be the preferred
choice vis-à-vis their mesh-based counterparts, e.g. the finite
element method (FEM), enabling substantively lower order
smoothness (typically C0 continuity) in the approximation. Many
such mesh-free or smooth discretization methods have of late
been developed and numerically explored; see [2–7]. Unfortu-
nately, higher smoothness in mesh-free methods, beyond a certain
order, is often achieved at the cost of deteriorating quality of the
functional approximation, thereby still necessitating additional
stabilization schemes for most such problems of practical interest.

In fluid dynamics, the appearance of an advection term (non
self-adjoint operator) is common in the governing partial differ-
ential equation (PDE). Here, a Bubnov–Galerkin weak formulation
where the test and shape functions are chosen from the same
approximation space leads to spurious oscillations in the solution
[8]. Large Peclet and Reynolds numbers that indicate the strength
of the convection terms further worsen the situation. Adding an
artificial diffusive term in the original PDE, as in the case of
upwind differencing in the finite difference method (FDM), leads
to results that are non-oscillatory but also inaccurate; a problem
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that can be solved by a correct choice of the artificial diffusion [8].
Similar strategies, adapted to the FEM, have led to streamline
upwind schemes where the addition of the artificial diffusion term
in the streamline direction gives nodally exact solution for the 1-D
case, but leads to inconsistency issues [9]. In the non-symmetric
Petrov–Galerkin (PG) FEM, the test function is chosen different
from the shape function and has been used to weigh disproportio-
nately the upwind and downstream nodes [10,11]. Even though
nodally exact solutions result in the FEM formulations described
above, their generalization to multidimensional systems is fraught
with troubles. Satisfaction of consistency with the weak form vis-
à-vis the exact solution and extension to multi-dimensional cases
of convection-dominated problems have been introduced in [8,12]
as the streamline-upwind Petrov–Galerkin (SUPG) method.
Further progresses with the SUPG may be traced in [13–17]. The
Galerkin least squares (GLS) method, developed subsequently, has
provided further improvements in the stabilized solutions [18].
Despite being widely used, the SUPG and GLS schemes both
employ stabilization parameters that are often chosen in a
problem- and discretization-specific, if not entirely ad-hoc, man-
ner. Given that numerical pollution is typically restricted within or
about the sharp gradient layers, which are localized in the domain
of interest, a measure of the solution gradient is exploited in these
cases to get a monotone response. The Godunov theorem [19] has
prompted explorations of gradient limiting non-linear schemes as
the theorem puts restrictions on linear schemes for achieving
monotone solutions. The total variation diminishing (TVD) meth-
odology used in the finite volume method (FVM) and the FDM
represents such a class of methods [19]. If the weight function is
made dependent on the solution gradient then the non-linearity
thus introduced results in a monotone PG FEM scheme [20]. The
discontinuous Galerkin FEM [21] has also been prominently used
in the simulation of response profiles with sharp gradients.

Another source of unphysical oscillations in computational
solid mechanics is due to the phenomenon of locking, wherein
numerical disturbances in the computed solution arises when
a particular system or model parameter approaches its limiting
value (e.g. thickness to zero, Poisson's ratio to 0.5 etc.) [22]. Given
the impracticability of very fine discretization levels to tackle this
degeneracy, various robust methods, including a family of mixed
formulations, are available in the literature [23–26]. In the context
of mixed FEM, primary stability considerations include K-ellipticity
and the Babŭska–Brezzi (BB) conditions [27,28]. The former is
concerned with the coercivity of the bilinear form and the latter
with the interpolation order of the different variables in the mixed
formulation. Apart from utilizing the BB condition, the bilinear
form can be stabilized by modifying it with suitable perturbation
terms whilst maintaining consistency [29–31]. The pressure sta-
bilizing Petrov–Galerkin (PSPG) method is one such scheme used
for the incompressible Navier–Stokes equation [32]. An excellent
review of the various stabilization techniques mentioned above
along with an in-depth discussion on various aspects of stabiliza-
tion can be found in [33].

The stabilization scheme proposed in this work is somewhat
unconventional in that it draws motivation from the concept of
nonlinear stochastic filtering, wherein the aim is typically to arrive
at (estimate) the system states such that, modulo the measure-
ment noise, the computed states ‘match’ with the available
measurements on a subset of such states. A generalization of this
idea, which herein leads to a stabilization approach for determi-
nistically posed problems, is based on the observation that the
noisy measurements in stochastic filtering may be thought of as
constraints on the computed system states. Thus, as a first step in
treating a more general class of constraints appearing in problems
of interest here, a stochastic framework is established wherein the
discretized system variables (e.g. the nodal unknowns in a mesh-

free method) appear as Markov stochastic processes following an
artificial introduction of Brownian noise vectors that may be
interpreted as a set of regularizers. Considering a deterministically
posed equality constraint in the next step (assuming, without
a loss of generality, that the right hand side of the equality evaluates
to zero), it is treated as a stochastic process referred to as the
‘innovation’ process in the current setting, wherein the constraint
is deemed to have been imposed when it is driven to a zero-mean
Brownian motion process. Thus, in the limit of the variance of the
last Brownian motion going to zero, the constraint may be
considered to have been enforced deterministically. By way of
driving the innovation process to a zero-mean Brownian motion, a
gain-based additive correction term is iteratively applied to the
deterministic (and possibly numerically polluted) solution of the
system, computed via a mesh-free method in this work. The
constraint, on the other hand, may be chosen in a problem-
specific yet non-unique manner so as to realize the end objective
of reduced numerical pollution especially in the sharp gradient
layers. The numerical work, reported on simulations of evolving
shocks in a 1-D and 2-D Burgers' equation and those of shear band
formations in a gradient plasticity model, helps characterize the
robustness and efficacy of the proposed method as a powerful
stabilization tool.

The rest of the paper is organized as follows. Section 2
describes the proposed stochastic stabilization scheme in the
general context of mesh-free discretization of a given system
model and provides a step-by-step implementation of the meth-
odology using a pseudo-code. Stabilized simulations of shocks in
the solutions of 1D and 2D Burgers' equations are considered in
Section 3. Section 4 implements the same strategy, albeit with
modifications in the constraint function, for stress stabilization in
the simulation of a strain gradient plasticity model. Finally, the
concluding remarks are furnished in Section 5.

2. Mesh-free discretization and stabilization based
on a pseudo-stochastic approach

Mesh-free methods are superior to FE techniques in several
respects. For instance, mesh-free shape functions may be con-
structed with arbitrary global continuity, thereby bypassing the
need for mixed formulations. As the name suggests, the domain
discretization or costly meshing is replaced with comparatively
simpler scattering of particles in the domain. Thus the problem of
remeshing or mesh refinement does not arise and the density of
particles can be modified or varied in a relatively straightforward
manner. Further, convergence characteristics of mesh-free methods
are superior compared to mesh-based implementations for the
same order of consistency. The disadvantages vis-à-vis the FEM
include failure to satisfy the Kronecker-delta property with the
attendant difficulty in enforcing Dirichlet boundary conditions
[34]. Moreover, derivations of mesh-free shape functions are not
as straightforward as their mesh-based counterparts, each mesh-
free variant having its own technique. Finally, the computational
effort expended in deriving the shape functions and inverting the
post-discretized system matrices, which have relatively higher
bandwidth vis-à-vis those in the FEM, is higher with mesh-free
methods. Further details on such issues and other aspects of mesh-
free methods are available in [1,35–39].

2.1. Element-free Galerkin (EFG) method

In the present work, EFG shape functions are consistently used
for functional discretization. It may be stressed as this point that
the EFG method forms part of a deterministic approach in
constructing the numerical solutions of PDEs. A brief account of
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