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a b s t r a c t

For an elastic system that is non-conservative but autonomous, subjected for example to time-
independent loading by a steadily flowing fluid (air or water), a dangerous bifurcation, such as a sub-
critical bifurcation, or a cyclic fold, will trigger a dynamic jump to one or more remote stable attractors.
When there is more than one candidate attractor, the one onto which the structure settles can then be
indeterminate, being sensitive to infinitesimally small variations in starting conditions or parameters.

In this paper we develop and study an archetypal model to explore the nonlinear dynamic
interactions between galloping at an incipient sub-critical Hopf bifurcation of a structure with shell-
like buckling behaviour that is gravity-loaded to approach a sub-critical pitch-fork bifurcation. For the
fluid forces, we draw on the aerodynamic coefficients determined experimentally by Novak for the flow
around a bluff body of rectangular cross-section. Meanwhile, for the structural component, we consider a
variant of the propped-cantilever model that is widely used to illustrate the sub-critical pitch-fork:
within this model a symmetry-breaking imperfection makes the behaviour generic.

The compound bifurcation corresponding to simultaneous galloping and buckling is the so-called
Takens-Bodganov Cusp. We make a full unfolding of this codimension-3 bifurcation for our archetypal
model to explore the adjacent phase-space topologies and their indeterminacies.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The simplest form of pure galloping is exhibited by a bluff body
oscillating transversely in a steady wind. With a structural support
providing both linear elastic stiffness and linear viscous damping,
the theory for this phenomenon was developed by Novak [1] for a
series of rectangular cross-sections. Based on experimental fitting
to the quasi-static aerodynamic forces, Novak0s theory agreed well
with his related experimental studies. An excellent modern
account of this, and other work, is given in the book by Paidousis
et al. [2]. Note that galloping is essentially a one-mode phenom-
enon, distinct from flutter which arises in systems with at least
two active modes; and even more distinct from vortex resonance
which involves a strong interaction with the fluid. Note, though,
that in nonlinear dynamics the bifurcations to both galloping and
flutter are described as a Hopf bifurcation [3–5].

The essence of Novak0s galloping theory was to use the highly
nonlinear aerodynamic force characteristics obtained by calibration
experiments in which a steady wind-stream was directed, at a series

of (resultant) angles, towards the stationary rectangular body. The
characteristic graph of lateral force versus angle of attack was then
approximated by a seventh-order polynomial. Some of Novak0s results
are summarised in Fig. 1. Here the lateral force on the rectangular
prism, in the direction of the lateral displacement, x, due to a wind of
velocity, V, is ½ ρaV 2Cf (α) where ρ is the air density, a is the frontal
area, and the (small) angle α is approximately x0/V. A prime denotes
differentiation with respect to the time, t. The responses in the right-
hand column show the amplitude of the steady-state oscillations.
These periodic motions are stable when represented by a solid line,
unstable when represented by a broken line. Hopf bifurcations on the
trivial solution are denoted by H, and away from the trivial path stable
and unstable oscillatory regimes meet at cyclic folds. Fast dynamic
jumps are indicated by vertical arrows.

For case (a) the wavy arrow denotes a slightly turbulent wind
(elsewhere the wind is steady). The 2:1 rectangular cross-section
exhibits a super-critical Hopf bifurcation at H, with a path of stable
limit cycles for higher values of the wind speed. In row (b) the
square cross-section in a steady wind exhibits at H a super-critical
Hopf bifurcation; and the subsequent limit cycles exhibit two
cyclic folds and an associated hysteresis cycle. In row (c) a 2:1
rectangle in steady wind exhibits a sub-critical Hopf bifurcation
at H from which a fast dynamic jump would carry the system
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to a large amplitude stable limit cycle (a periodic attractor). The
unstable path from H eventually stabilizes at a cyclic fold, giving
an overall (dynamic) response akin to the (static) response of
many shell-buckling problems.

In the bottom row, (d), a 1:2 rectangle standing across-wind
gives no bifurcation from the trivial solution but large amplitude
stable and unstable cycles do exist, separated again by a fold.

Some of the most familiar examples of galloping arise with
engineering cables [6,7], but we should note that a cable of circular
cross-section cannot gallop because the (pure drag) force is in the
direction of the resultant wind velocity, and therefore opposes any
cable motion. Some cables that can and do gallop are shown in
Fig. 2.

Galloping problems can also arise in complete structures, such as
tower blocks, and here there can be interactions between the wind-
induced vibrations and gravity-induced buckling. A classic case was
the high-rise Hancock Tower in Boston [8] which had a lot of such
problems in its early days. Window panes started falling out, and
eventually all 10,344 had to be replaced (the London Shard has
11,000). Occupants suffered from motion sickness, and tuned mass-
dampers had to be fitted. There were still problems, however, when a
gravitational instability increased the period of vibration from 12 to
16 s. The final cure was to add 1500 t of diagonal steel bracing, costing
$5 million. The tower is still standing today; and still winning
architectural prizes for its minimalism!

It is the purpose of this paper to examine the interactions
between (Hopf) galloping and (pitch-fork) buckling, remember-
ing that simultaneous failure modes often represent a simplistic,

though potentially dangerous, optimal design [9]. We introduce
an archetypal model which is non-conservative but autonomous,
subjected to time-independent loading by a steadily flowing fluid
(air or water). It is designed to exhibit sub-critical bifurcations in
both galloping and buckling, both of which will trigger a dynamic
jump to a remote stable attractor. When there is more than one
candidate attractor, the one onto which the structure settles after
the Hopf bifurcation can be indeterminate [5,10]. This is due to the
two-dimensional spiralling outset (unstable manifold) of the
Hopf, which makes the outcome sensitive to infinitesimally small
variations in starting conditions or parameters. This indetermi-
nacy forms the focus of our investigation.

2. Archetypal model for combined galloping and buckling

We consider the archetypal model, shown in Fig. 3, that we
use to study the nonlinear dynamic interactions between gallop-
ing and shell-like buckling. A rigid link is pivoted as shown, and
held (nominally) vertical by a long spring of stiffness k which is
assumed to remain horizontal throughout and is attached to the
mass-less rod at a distance L2 from the pivot. We introduce an
imperfection into the model by supposing that this spring is
initially too short by y0 to hold the unloaded rod exactly vertical.
Loaded by the mass m of the grey prism, assumed concentrated at
a point on the mass-less rod at a distance L1 from the pivot, this
model will exhibit a sub-critical pitch-fork bifurcation. The only
interaction with the wind is (considered to be) through the grey

Fig. 1. Various aerodynamic characteristics (first column) and their corresponding dynamic responses (second column) due to Novak [1].
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