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a b s t r a c t

Static deflections and natural frequencies of vibrations are obtained for blade-stiffened plates using a
three-dimensional model for the plate and a two-dimensional (plane stress) model for the stiffener with
simply supported edge/end conditions. These are used as a benchmark for assessing the approach based
on the classical hairbrush hypothesis. Results obtained by using the rigorous elasticity model for the
plate alone or the stiffener alone are also presented. These results indicate the greater importance of
non-classical effects in the analysis of stiffened plates as compared to unstiffened plates.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread use of stiffened plates as primary load bearing
structures is testament to their inherent structural efficiency and
to the advent of modern state-of-the-art manufacturing and
materials technology. Composite stiffened plates, in particular,
provide designers with the opportunity to tailor strength, stiffness
and other properties as per structural requirements. This has led to
prolific use of such structures in the aerospace, civil, automobile,
naval and other high performance industries.

The analysis of stiffened plates can be carried out by different
approaches. The orthotropic plate “smeared-out” idealization
replaces the plate–stiffener system with an equivalent homoge-
neous plate with orthotropic properties [1]. While this idealization
simplifies the analysis to a great extent, it only provides accurate
results when the stiffeners are of uniform size, are closely spaced
and their rigidities do not dominate the plate rigidity. Further-
more, this smearing-out of stiffener properties leads to a loss in
the discrete nature of the plate–stiffener system and hence in
capturing the influence of different geometric parameters on its
response.

The plate–beam discrete idealization involves isolating the plate
from the beam, modelling them using various simplified theories
(usually based on Kirchhoff–Love hypothesis) and maintaining
compatibility at the interfaces. However, because of the difficulty

in developing general closed-form analytical solutions for this
system, increased emphasis was laid on the development of various
computer based approximate and numerical schemes using energy
principles [2,3], the constraint method [4], BEM and FEM [5–7].

For composite stiffened plates, the effect of shear deformation on
the plate behaviour cannot be neglected. This is because the shear
stiffness of such materials is small compared to their bending and
membrane stiffness ðEL=GLT ¼ 10�50Þ unlike for metals where these
stiffnesses are comparable ðE=G¼ 2ð1þνÞ⋍2:6Þ. With regard to the
unstiffened plate, Pagano [8] and Srinivas et al. [9] formulated 3D
elasticity solutions for laminates for capturing the shear deformation
completely. As an alternative, shear deformation effects may also be
accounted for in a 2-D formulation by assuming appropriate dis-
placement fields, as has been illustrated by Carrera [10].

Deb et al. [11] developed an approximate shear deformation
theory for stiffened plates based on the Reissner–Mindlin plate
theory and Timoshenko beam theory and the smeared-out idea-
lization. Mukherjee et al. [12], Sadek et al. [13], Biswal et al. [14]
and Ghosh et al. [15] presented finite elements based on a higher
order shear deformation theory (HSDT) for static and vibrational
analysis of laminated stiffened plates. Bhar et al. [16] carried out a
comparison of the finite element results of composite stiffened
plates based on first order shear deformation theory (FSDT) and
HSDT. They strongly advocate the use of HSDT over the Classical
Plate Theory and even FSDT specially when the panels become
thick. Sapountzakis et al. [17] presented an optimized model based
on the classical approach, which accounts for the inplane forces
and displacements at the interface of the plate and the beam. By
comparing their results with a number of finite element models,
they bring out the importance of considering the inplane shear
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forces for a more accurate description of the behaviour of the
stiffened plate. Qing et al. [18] developed a 3D solution for the free
vibrations of stiffened plates based on the variational approach,
which uses finite elements to solve state vector equations. The
model automatically considered transverse shear deformations
and rotary inertia.

In this context, the aim of the current work is to present an
analytical elasticity solution for blade stiffened plates wherein the
plate is modelled as a 3D solid and the stiffener as a plane stress
problem, so that non-classical effects such as transverse shear
deformation and rotary inertia are automatically accounted for; all
the plate edges as well as the ends of the stiffeners are taken to be
simply supported. By comparing this elasticity solution with
various approximate models, an attempt will be made to quantify
the individual contributions of the plate and beam to the total
shear deformation of the structure for different geometric para-
meters and material properties. Both static deflections and free
vibrational frequencies will be studied.

2. Formulation

Consider a rectangular plate of sides a, b and uniform thickness
h (Fig. 1) with simply supported edges. The plate is integrally
stiffened by a single eccentric rectangular beam of height H and
breadth B, attached to only one side, say, the bottom surface of the
plate along the central line y¼b/2. The ends of the stiffener are
also taken to be simply supported.

The elasticity solution is formulated by isolating the stiffener
from the plate and taking into account the continuity conditions at
the interface. The plate is modelled using the equations of 3D
elasticity while the stiffener is modelled using a plane stress
formulation. With regard to the interface tractions, it is assumed
that they remain constant over the width B of the stiffener. In the
present work, attention is focused on flexure of the plate symme-
trically about the stiffener, and hence the torsional behaviour of
the stiffener does not come into picture.

2.1. Analysis of the stiffener

Assuming that the stiffener is specially orthotropic with respect
to the x–z coordinates with the plane stress constitutive law
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the equations of motion can be written in terms of the displace-
ments u and w along the x and z directions respectively, as

Q11u;xxþQ55u;zzþðQ12þQ55Þw;xz ¼ ρu;tt

ðQ12þQ55Þu;xzþQ55w;xx; þQ22w;zz ¼ ρw;tt ð1Þ
where ρ is the mass density of the stiffener.

Selection of displacement functions
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where ω is the natural frequency ensures that the shear dia-
phragm type simple support conditions

at x¼ 0; a; w¼ 0; σx ¼ 0

are satisfied a priori.
Substitution of the above displacement functions into (1)

reduces them to a 4th order system of linear ordinary differential
equations in z. Following the standard procedure of seeking
solutions for U(z) and W(z) as
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one gets the auxiliary equation as

A0s4þB0s2þC 0 ¼ 0 ð2Þ
where

A0 ¼Q22Q55

B0 ¼ p2Q2
12�p2Q11Q22þ2p2Q12Q55þQ22ρω2þQ55ρω2

C0 ¼ p4Q11Q55�p2Q11ρω2�p2Q55ρω2þρ2ω4

and p¼mπ=a
The nature and multiplicity of the roots of (2) depend on the

material properties and the assumed initial value of ω and this
dictates the final solution. For example, in the case of real and
distinct roots, the final solution is of the form:
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Of the 8 constants C1i, C2i (for each harmonic m), only 4 are
independent. The inter-relationships are established by substituting

Fig. 1. Eccentrically stiffened plate.
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