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a b s t r a c t

In this paper, investigations of a harmonically excited one-degree-of-freedom mechanical system having
an amplitude constraint are presented. The contact between the oscillated mass and the barrier is
modeled by Hertz's law with a non-linear damping as well as by Newton's law. The influence of the
frequency of excitation force on the system's behavior is studied in a wide range of the control parameter
by determining and analyzing the corresponding spectra of Lyapunov exponents. The dynamical
behaviors of two systems with impacts: a system with Hertz's undamped impacts and a system with
perfectly elastic hard impacts, which are equivalent in the sense of the same rate of impact energy
dissipation, are compared and strong qualitative and quantitative similarities are observed. As an
application example, a simple cantilever beam system with impacts is considered and the combined
effects of the nonlinearities due to beam deflection and impacts of Hertz's as well as Newton's types are
investigated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The calculation of Lyapunov exponents is one of fundamental
elements in analysis of nonlinear dissipative systems with a finite
number of degrees of freedom. They are numerical characteristics
that allow for qualitative and quantitative evaluation of the system
dynamics. These quantities are strictly connected to such mea-
sures of chaos as the Kolmogorov entropy and dimension of
the dynamical system. The theoretical foundations for existence
and uniqueness of Lyapunov exponents have been presented by
Oseledec [1]. A spectrum of Lyapunov exponents characterizes the
medium expansion of a small subset in the phase space along the
trajectory. To identify the character of the system dynamics, it is
usually enough to know the sign of the largest Lyapunov exponent
—its non-positiveness renders the regularity of the system motion,
whereas its positiveness—proves the chaotic character of the
solution. The value of the largest Lyapunov exponent describes
the rate of the mean exponential convergence or divergence of
adjacent trajectories on the attractor.

The first method to calculate the whole spectrum of Lyapunov
exponents was presented independently by Benettin et al. [2]
and Shimada and Nagashima [3]. In the literature, there are two

classical approaches towards determination of Lyapunov expo-
nents for smooth systems with known equations of motion. In the
first one, (see, for instance, [4]), an evolution of infinitesimal
vectors of distortions in the trajectory under consideration is
described by means of linearization of the vector field. The second
approach (see, for example, [5]) consists in a substitution of the
continuous system by its discrete counterpart, for instance, by
applying Poincare maps, and a consideration of the linearization of
the discrete map. Some alternative methods proposed by Stefanski
(see, for instance, [6]) and Dabrowski (see, [7]) allow for determi-
nation of the largest Lyapunov exponent on the basis of the
synchronization phenomenon of pairs of identical systems and
the derivative dot product of perturbation vector, respectively.

Methods that enable estimation of Lyapunov exponents from
experimental time series, that is to say, in the case when the
system of differential equations describing the behavior of the
system is not available, are known as well. Their basis usually lies
in a reconstruction of the state space with the delay method,
introduced by Takens [8]. The first procedure of this kind for
calculation of the largest Lyapunov exponent was given by Wolf
et al. [9], whereas analogous algorithms for determination of
the whole spectrum of Lyapunov exponents can be found in
Parlitz [10], Sano and Sawada [11], and Yang and Wu [12].

In the literature, a few adaptations of classical methods for
determination of Lyapunov exponents to the case of piecewise
smooth systems can be found. Müller [13] (cf [14]) has shown that
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the conditions for transition of the system through the non-
smoothness have their counterparts for the linearized system,
due to which it is possible to determine Lyapunov exponents with
a classical method of the Benettin et al. type [2]. A similar
modification of the discrete method, based on the notion of local
Nordmark maps [15], has been presented by Jin et al. [16].
A different approach with a smaller range of applications limited
to piecewise linear systems, consists in an application of disconti-
nuity maps ([17,18]) instead of Poincare maps.

An important part of the dynamical systems is represented
by those systems whose motions take place in the presence
of impacting interactions between the masses of the system
(see [19,20]). The classic approach to study the collision process,
called stereomechanical model of a collision [21] or hard collision
model [22], uses the coefficient of restitution and the principle of
conservation of momentum, and allows to determine the velocity
of the bodies after the collision on the basis of knowledge of the
velocity of the bodies before the collision. Taking into account the
duration of the impact and the coefficient of restitution depending
on the velocity, leads to models which more accurately describe
the process of collision (see e.g. [23,24]). Such a process is similar
to the collision with the stop with a certain vulnerability, and is
called a soft collision model [22]. In this case, there is a choice of
stops modeling. They can be linear (e.g., models of vibroimpact
systems with clearance [25–28]) or nonlinear (e.g., Hertz's models
[21,29,30]), elastic or elastic-damping constructions. A compre-
hensive survey of the current knowledge about systems with
impacts has been made by Ibrahim [31].

The above-described methods of deriving Lyapunov exponents
have been applied to impact systems with rigid stops ([32–36]),
except for [37], in which Lyapunov exponents have been calculated
with the method of impact maps for piecewise linear one-degree-
of-freedom systems with one-sided impacts.

In this paper, we deal with a one-degree-of-freedom linear
oscillator with impacts modeled with soft nonlinear elastic struc-
tures (Hertz's contact model [21]), soft nonlinear elastic-damping
structures (Hertz's damp contact model [30]) as well as Newton's
law of contact, which besides its own interest, aims at represent-
ing an impacting cantilever beam system. The main objective is to
analyze qualitatively and quantitatively the influence of the
frequency of excitation force on the system's behavior in the case
of these three contacts models as well as to compare the resulting
responses. To this aim, we adapt the Müller's approach and
determine numerically the spectra of Lyapunov exponents. The
results obtained are consistent with the corresponding bifurcation
diagrams.

The presented study shows that the knowledge of Lyapunov
exponents enables more detailed analysis of the system's behavior
in comparison to other tools, e.g., Poincare maps or bifurcation
diagrams. In particular, it allows to identify some phenomena
which have not been reported on the basis of bifurcation diagrams,
like some periodic orbits not identified in the study by Pust and
Peterka [30]. Furthermore, we show that Lyapunov exponents can
provide a tool for not only qualitative (cf. [29]) but also quantita-
tive comparison of different systems with impacts. The presented
comparison of dynamical behaviors of a system with Hertz type
undamped collisions of relatively small values of stiffness and a
system with perfectly elastic hard collisions revealed their good
qualitative and quantitative agreement. This agreement manifests
itself in the appearance, for almost the same values of the
excitation force, of the chaotic motions with almost identical
values of the Lyapunov exponents corresponding to both the
collisions models, as well as in the existence, in a wide range of
the excitation force, of periodic motions with impacts, for which
the corresponding Lyapunov exponents are very close to each
other. In particular, this is the case when the two systems begin to

come into collisions with low velocity impacts, causing instabil-
ities of grazing-type.

From the mechanical engineering point of view, our results apply
to a simple cantilever beam system with impacts, which is com-
monly used as an element of engineering design. However, if the
beams are parts of a larger system, significant errors in the
dynamical responses can result from neglecting even small non-
linearities. The cumulative effect of the nonlinearity associated with
the beam deflection and the nonlinearity due to impact model with
clearance and linear spring was examined by Emans et al. [38] and
Lin et al. [39]. We extend these studies to two other impact models.
A comparison of dynamic responses of simple linear and nonlinear
beam systems with impacts of Hertz's and Newton's type revealed
their qualitative differences for physically realistic parameters.

This paper is organized as follows. Mathematical models of the
considered system are introduced in Section 2. In Sections 3 and 4,
the classical method for Lyapunov's exponents determination as
well as its modification for systems with singularities are briefly
described. Analysis of a harmonically excited one-degree-of-free-
dom impact oscillator with two Hertz's models of contact carried
out with the help of the corresponding spectra of Lyapunov's
exponents as well as a comparison of dynamics of a system with
perfectly elastic hard impacts and an equivalent, in the sense of
the same rate of impact energy dissipation, system with Hertz's
impacts, are presented in Section 5. In Section 6, the cumulative
effect of different type nonlinearities on cantilever beam responses
is investigated. The conclusions are formulated in Section 7.

2. Mathematical model of the system

The system under consideration consists of a linear oscillator
with mass m, coefficient of viscous damping c and spring stiffness
coefficients k and ke, presented in Fig. 1. The oscillator can be
under either external kinematic excitation (Fig. 1a) or external
forcing (Fig. 1b). In the first case the upper end of the spring ke
moves harmonically with the assigned amplitude a and frequency
ω. In the second case, the harmonic force of the assigned
amplitude F and frequency ω acts on the oscillator. When the
oscillators are in their static equilibrium positions, the distance
between their impacting surfaces and the unmovable fender is ρ.
The motion of the oscillators around their static equilibrium
positions is described by coordinate x.

The equations of impactless motion of the above-described
systems are as follows:

� for the oscillator shown in Fig. 1a

m
d2x
dt2

þc
dx
dt

þðkþkeÞx¼ kea cos ωt; ð1aÞ

Fig. 1. Impacting oscillators with two types of external excitation.
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