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a b s t r a c t

Elastic dynamics in the stability of an elastic solid sliding against a functionally graded material (FGM)
coated half-plane is investigated by examining the stability of elastic waves caused by the perturbation.
The material properties of the FGM coating vary exponentially along the thickness direction. The effects
of the gradient index, friction coefficient and sliding speed for various material combinations on the
dynamic instability are discussed in detail. The transverse normal stresses in both coating and
homogeneous half-plane are calculated and the effect of the graded coating on the stress distribution
is also discussed. It is shown that the FGM coating can be used to modify sliding stabilities and control
the interfacial tensile stress, and thus reduce the possibility of the interfacial contact failure simulta-
neously.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding friction is one of the oldest areas of research [1].
In particular, the frictional motion is often unstable and gives rise to
non-uniformities, noise and vibrations, ranging from nano-tribology
[2] to “squeal” or “hot-spotting” in brakes or clutches [3,4], up to the
scales of sliding of tectonic plates in earthquakes [5–7]. Martins et al.
[8] investigated dynamic instabilities of the steady frictional sliding
of a linear elastic or viscoelastic half-plane compressed against a rigid
plane which moved with a prescribed non-vanishing tangential
speed. These instabilities were thought to play a role in Schallamach
waves [9]. Adams [10] found that the steady sliding of two elastic
half-planes was also dynamically unstable. Steady-state sliding can
give rise to a dynamic instability in the form of self-excited motion.
Later, Adams [11] used a simple beam-on-elastic-foundation model
to investigate instabilities caused by the sliding of a rough surface
against a smooth surface. He observed that the instability would
eventually lead to either partial loss of contact or to stick-slip motion.
Adams [12] indeed showed that stick-slip motion at the interface can
exist with a constant friction coefficient. Wang et al. [13] investigated
the slip waves propagating along an interface between two aniso-
tropic solids in the frictional sliding contact with local stick-slip.
Another type of instability is the frictional heating induced instability.
The simple 1D and 2D models were studied by Afferrante et al. [14]
and Afferrante and Ciavarella [15–17] by considering an elastic layer

sliding against a rigid wall. They found that thermal effects can
render unstable the otherwise neutrally stable natural elastodynamic
modes of system, giving rise to a new family of instability, which is
called TEDI. Later, Afferrante and Ciavarella [18] considered the
general case of two sliding elastic half-planes, again finding the
general family of instability TEDI class.

In some frictional contact problems, a thin tribological layer
between two bodies was introduced. Adams [19] discussed the
effect of surface layers on dynamic instabilities in the sliding of
two elastic half-planes. For the case of a rough and stiff surface
topography of the layer, Slavic et al. [20] provided a model to
describe roughness-based vibrations of the sliding system.

In fact, the conventional homogeneous layered structure may
cause the “interface-problem” by the abrupt change in the
material properties at the interface, which results in the stress
concentration, degraded bonding strength and consequently sus-
ceptibility to interface failure under the heavy contact loading.
Furthermore, the conventional homogeneous layered structure
may affect the sliding stabilities [19]. FGMs possess properties
that vary gradually with location within the material. Used as
coatings and interfacial layers, they can reduce the magnitude of
residual and thermal stresses, mitigate stress concentration and
increase fracture toughness [21]. In order to improve sliding
stabilities as well as alleviate the “interface-problem”, we try to
introduce the functionally graded materials (FGMs) as the coating.
Therefore, the main purpose of the present investigation is to
determine the effect of an FGM coating on dynamic instabilities in
the sliding of two elastic half-planes.
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Elastic dynamic instability of an elastic solid sliding against an
FGM coated half-plane is investigated in this paper by examining
the stability of elastic waves caused by a perturbation. The material
properties of the FGM layer are assumed varying exponentially
along the thickness direction. A parametric study is conducted to
highlight the effects of the gradient index, fiction coefficient and
sliding speed for various material combinations on the dynamic
instability. In addition, the transverse normal stresses varying in the
direction of the depth for both FGM coated and homogeneous
coated structures are determined.

2. Problem description

We consider a homogeneous elastic half-plane sliding against
an FGM coated half-plane under the normal force P̂0 and tangen-
tial force Q̂0, see Fig. 1. Friction follows the Coulomb friction law,
i.e., Q̂0 ¼ f P̂0 with f being the friction coefficient. The lower and
upper half-planes are homogeneous with the shear moduli μ1, μ2
and mass densities ρ1, ρ2, respectively. It is assumed that the lower
and upper half-planes move with constant speeds V̂1, and V̂2,
respectively. That is to say, two half-planes slide with a relative
speed V̂0 ¼ V̂2� V̂1. The problem is formulated in a coordinate
system (x̂; ŷ) moving to the right with a constant speed V̂ where V̂
is not necessarily equal to V̂0. The FGM coating is perfectly bonded
to the lower half-plane, and its properties vary along the thickness
direction according to the exponential function

μðŷÞ ¼ μ0e
αŷ; ρðŷÞ ¼ ρ0e

αŷ; ð1Þ

where α̂ is the gradient index of the FGM coating; and μ0 and ρ0
are the shear modulus and mass density of the bottom (ŷ¼ 0) of
the FGM coating, respectively.

In this paper, we will examine the stability of the above sliding
system by assuming the system to be disturbed with a very small
perturbation. Then an elastic wave will be generated and propa-
gate through the system. If the elastic wave decays with the time,
then the sliding is stable; otherwise if the elastic wave gains with
the time, then the sliding is unstable and will lead to the sliding
instability. This dynamic instability can eventually give rise to the
partial separation or the stick-slip regions.

By considering the elastic wave caused by the small perturba-
tion, the displacement and stress may be decomposed into two
parts, i.e.,

ût x̂; ŷ; t̂
� �¼ ûn x̂; ŷ

� �þ û x̂; ŷ; t̂
� �

; ð2Þ

σ̂t x̂; ŷ; t̂
� �¼ σ̂n x̂; ŷ

� �þ σ̂ x̂; ŷ; t̂
� �

; ð3Þ

where t̂ is time; and ûn x̂; ŷ
� �

and σ̂n x̂; ŷ
� �

are quasi-static displace-
ment and stress which are invariant in time and satisfy

σ̂n

yy x̂; � ĥ
� �

¼ � P̂0; σ̂n

xy x̂; � ĥ
� �

¼ �Q̂0; ð4Þ

on the frictional sliding interface (ŷ¼ � ĥ). The second terms
û x̂; ŷ; t̂
� �

and σ̂ x̂; ŷ; t̂
� �

correspond to the elastic wave caused by
the small perturbation and are the main concern in the present
study. They need to satisfy the boundary conditions at the
frictional sliding interface ŷ¼ � ĥ, i.e.,

σ̂xy x̂; � ĥ; t̂
� �

¼ f σ̂yy x̂; � ĥ; t̂
� �

; ð5Þ

ûy x̂; � ĥ; t̂
� �h i

¼ 0; σ̂yy x̂; � ĥ; t̂
� �h i

¼ 0; ð6Þ

where U½ � denotes the discontinuities of the interfacial displace-
ment and stress components. In addition, the continuity condi-
tions on the bonded interface ŷ¼ 0, are

ûx x̂;0; t̂
� �� �¼ 0; ûy x̂;0; t̂

� �� �¼ 0; ð7Þ

σ̂yy x̂;0; t̂
� �� �¼ 0; σ̂xy x̂;0; t̂

� �� �¼ 0: ð8Þ

It is noted that the contact pressure P̂ must be non-negative
and the direction of the slip velocity (Vs) at the sliding interface is
the same as that of V̂0 when there is no stick-slip or stick-slip-
separation motion at the sliding interface.

In the moving coordinate system, the wave motion equations
for the linear homogeneous isotropic half-plane are given by

β2
∂2ûx

∂x̂2
þ∂2ûx

∂ŷ2
þ β2�1
� � ∂2ûy

∂ŷ ∂x̂
¼ ρ̂

μ̂
V̂
2∂2ûx

∂x̂2
�2V̂

∂2ûx

∂x̂ ∂t̂
þ∂2ûx

∂t̂
2

 !
; ð9Þ

β2
∂2ûy

∂ŷ2
þ∂2ûy

∂x̂2
þ β2�1
� � ∂2ûx

∂ŷ ∂x̂
¼ ρ̂

μ̂
V̂
2∂2ûy

∂x̂2
�2V̂

∂2ûy

∂x̂ ∂t̂
þ∂2ûy

∂t̂
2

 !
; ð10Þ

where V̂ ¼ V̂1 or V̂2; and ν is Poisson's ratio. The wave motion
equations in the FGM coating are

2 1� ν0ð Þ
1�2ν0

∂2 ûx

∂x̂2
þ ∂2 ûx

∂ŷ2
þ 1

1�2ν0
∂2 ûy
∂x̂ ∂ŷþα ∂ûx

∂ŷ þ
∂ûy
∂x̂

� �

¼ ρ0
μ0

V̂
2∂2ûx

∂x̂2
�2V̂

∂2ûx

∂x̂ ∂t̂
þ∂2ûx

∂t̂
2

 !
; ð11Þ

2 1� ν0ð Þ
1�2ν0

∂2 ûy

∂ŷ2
þ ∂2 ûy

∂x̂2
þ 1

1�2ν0
∂2ûx
∂x̂ ∂ŷþ 2α

1�2ν0
1�ν0ð Þ∂ûy

∂ŷ þν0
∂ûx
∂x̂

h i

¼ ρ0
μ0

V̂
2∂2ûx

∂x̂2
�2V̂

∂2ûx

∂x̂ ∂t̂
þ∂2ûx

∂t̂
2

 !
: ð12Þ

In the following, we will solve Eqs. (9)–(12) under the bound-
ary conditions (5)–(8) and analyze the stability of the elastic wave.

3. Elastic wave fields

A convenient dimensionless formulation can be developed by
defining the normalized quantities

x¼ x̂=l; y¼ ŷ=l; t ¼ t̂ĉs=l; V ¼ V̂=ĉs; ĉs ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
; ð13aÞ

ux x; y; tð Þ ¼ ûx x̂; ŷ; t̂
� �

=l; uy x; y; tð Þ ¼ ûy x̂; ŷ; t̂
� �

=l; ð13bÞ

where the characteristic length l is the dimensional wavelength.
Then, the wave motion Eqs. (9) and (10) for the upper half-plane
can be written in the dimensionless form as

V

x

y

hy y

P

Q

P

Q

Fig. 1. A homogeneous elastic half-plane sliding against an FGM coated half-plane.
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