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a b s t r a c t

This paper studies the stabilization, tracking of a predefined trajectory and how to reach a desired set
point for a wheel which is rolling on a horizontal plane without slipping. For this purpose, the wheel is
controlled by small torque generated by internal servomechanisms whose dynamics can be neglected.
An efficient procedure to determine the kinetic energy of the wheel is developed by introducing a set of
reference systems, which in combination with the Lagrange equations with multipliers allow deriving
the mathematical model of the rolling wheel. In this model, the Euler angles, the coordinates of the
plane–wheel contact point and a control law of proportionalþ integralþderivative (PID) type provide an
efficient computational procedure to track arbitrary trajectories. It is shown that the nonholonomic
constraints are fulfilled with admissible reaction forces, even when the desired trajectory has cusp
points. A circumference and a family of astroids are used as trajectories to verify the motion conditions
derived from the energy conservation and dynamical equilibrium of the wheel along such trajectories.
The results of the analytical calculations are corroborated through numerical simulations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The nonholonomic mechanical problem of a wheel that rolls on a
horizontal plane is emblematic in the history of rigid solid dynamics.
Studies about this problem begun in the XIX century and were
considered in the classical works of Chaplygin, Routh, Hamel, Appell
and Korteweg, among others [1–4]. More recently, a wheel assimi-
lated to a disk or a torus that rolls on a horizontal plane without
involving control torques has been analyzed in Refs. [4–7]. On the
other hand, the differential geometry approach currently offers a
powerful tool in the new developments of mechanics such as
nonholonomic systems [8–10] and the controlled motion of wheeled
mobile robots, which have become the subject of numerous research
studies [11–14] (see also references cited therein).

The stability of a wheeled vehicle is closely related to the kinematics
and dynamics of a wheel, including friction and deformation [15,16] as
well as effects of non-ideal contact between the surfaces of rolling
bodies as it can be found in Refs. [4, Chapter IV; 17–19]. Currently, non-

ideal contact problems of wheels rolling on surfaces of several materials
can be found in Refs. [20,21] and in the references therein contained.
On the other hand, the control and guidance of a rolling disk on a
horizontal plane has been analyzed assuming that the motion of the
disk is controlled by torques generated by internal servomechanisms,
slender rods and rotors [22–24]. A prototype is the so called gyrover,
which in essence is a single-wheel robot with a gyroscopic stabilization
mechanism and an adequate pedaling torque [25].

In this work we derive the nonholonomic constraints of a rolling
wheel on a horizontal plane through geometrical considerations and
then we deduce the kinetic energy by using an adequate definition of
a set of reference systems. Once the kinetic energy and the non-
holonomic constraints have been obtained, the mathematical model of
the wheel is deduced by using the Euler angles and the coordinates of
the contact point between the wheel and the supporting plane. By
using such mathematical model in combination with an adequate
control law, we demonstrate the possibility of tracking of a predefined
trajectory and reaching an arbitrary desired set point for the wheel. In
a previous study [26], a rolling disk that can reach a predetermined set
point (regardless the followed trajectory) has been investigated by
using the Newton–Euler equations. However, the current paper aims
to track of a predetermined trajectory for a rolling wheel that can be
assimilated to a torus, and the nonholonomic constraints are different
than the ones of Ref. [26]. Other examples of related rolling disks can
be found in Refs. [17,22–24,27].
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To carry out our study, we first analyze the limit values of the
rotation velocity to obtain a stable rolling wheel without control
torques. Assuming that a friction rolling torque is present, the
motion of the wheel is also analyzed, showing that the energy
conservation principle is verified. Since the wheel without control
torques is very unstable, a stabilizing torque around the leaning
angle is added, showing that in this case the angular velocity of the
wheel can be drastically reduced.

On the basis of the nonholonomic conditions it is shown that
the wheel can be driven along a circumference. In this case, it is
verified that the analytical expressions for the radius of the circle
and the coordinates of the trajectory center are in agreement with
numerical simulations. Besides, the conditions of dynamical equi-
librium between the centrifugal force and the lateral reaction force
at the contact point wheel–plane are fulfilled with a small
stabilization torque [1–4,27].

The tracking of a prescribed trajectory is obtained by eliminat-
ing the Euler angles between the differential equations that define
the coordinates of the contact point wheel–plane and the equa-
tions that arise from assuming fictitious forces applied at the mass
center of the wheel. In the resulting equations, a control law of PID
type is designed so that the error between the actual and the
desired trajectory tends to zero. The stability conditions for the
integral action of the PID controller are analyzed from Routh's
criterion of stability [28]. This procedure has the advantage of
obtaining small torques even when the control is applied abruptly,
and thus the dynamics of the internal servomechanisms respon-
sible for the control torques can be neglected. In addition it is
shown that it is possible to track trajectories with cusp points and
to jump to a prescribed set point from an arbitrary point of the
tracked trajectory.

2. Nonholonomic constraints and mathematical model of the
wheel

In this section, the nonholonomic constraints and the mathe-
matical model of the wheel are analyzed. Let us consider a wheel
modeled by a torus assuming that its mass is uniformly distributed
along its surface and that its geometrical center coincides with the
center of mass of the torus. In addition, the masses of the servo-
mechanisms which will generate the control torques are assumed to
be located in the mass center of the torus. As notation criterion, b
shall denote the curvature radius of the torus meridian (i.e. the outer
radius of the torus) and aþb shall denote the radius of the equatorial
circle of the torus. On the other hand, p, q and r are the precession,
leaning and spin angles respectively, which define the orientation of
the torus with respect to a fixed reference frame OXYZ. Thus _p; _q; _rð Þ
are the corresponding angular velocities of the angles (p,q,r) defined
with respect to the moving reference system Gξηζ bounded to the
torus, as shown in Fig. 1a. The magnitudes (p,q,r) are the classical
Euler angles (also denoted by ψ� p, θ� q and φ� r [1–4,6,27]), for
which the considered notation in this paper aims to ease the
discussion of the mathematical model. The magnitudes λ and μ are
the reaction forces located in the OXY plane, which will be inter-
preted as Lagrange multipliers.

2.1. Nonholonomic constraints

Our first purpose is to determine the nonholonomic constraints
of the torus when it is rolling on a horizontal plane, assuming that
C is the only contact point between the torus and the supporting
plane. To do this aim, from Fig. 1b it is deduced that the two
curvature radii due to the rolling movement around point C are a
and CM¼ PG¼ bþa sin q. Assuming that dS1 and dS2 are infinitesimal

displacements of the contact point C, we can write that:

dS1 ¼ adq; dS2 ¼ bþa sin qð Þdr ð1Þ
where the curvature radius a is associated to the rotation defined by the
leaning angle q and the curvature radius bþa sin q is due to the
infinitesimal change of the spin angle r. The values of dS1 and dS2 are
plotted in Fig. 1c. By projecting dS1 and dS2 on the OX and OY axes it
follows that:

dx¼ dS1 sin p�dS2 cos p
dy¼ �dS1 cos p�dS2 sin p

)
ð2Þ

On the other hand, substituting Eq. (1) into Eq. (2) and dividing
the resulting equation by dt, Eq. (2) can be rewritten as

_x¼ � _r bþa sin qð Þ cos pþa_q sin p
_y¼ � _r bþa sin qð Þ sin p�a _q cos p

)
ð3Þ

where the upper dot indicates derivative with respect to the time.
Eq. (3) are the nonholonomic conditions assuming pure rolling of
the torus on the horizontal plane. It should be noticed that the
coordinates (x,y) of point C define the successive contact points
between the torus and the supporting plane, which form a
trajectory that is followed with a translation velocity _x; _yð Þ. Such
translation velocity is the one that an observer could perceive if
he/she were unable of noticing the combined rotation motions of
the wheel. However, the point of the torus in contact with the
horizontal plane has zero relative velocity with respect to the OXYZ
reference system. In some Refs. [1–3,6] equivalent nonholonomic

Fig. 1. (a) Wheel rolling on a horizontal plane with reaction forces λ and μ. The
Euler angles and their derivatives are denoted by (p,q,r) and _p; _q; _rð Þ respectively.
The inertial system is OXYZ whereas Gξης is the reference system bound to the
body. (b) Cross section of the wheel that is used to determine the generalized
torques. (c) Scheme showing an infinitesimal displacement of the contact point C to
determine the nonholonomic constraints. The parameter values are a¼0.1 m,
b¼0.3 m, M¼5 kg (wheel mass), M1¼3 kg (servomechanism mass) and
MT¼MþM1¼8 kg. The equatorial and polar moments of inertia are
Ae¼0.2875 kg m2 and Cp¼0.5250 kg m2 respectively.
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