
Exact solutions for stresses, strains, and displacements of a rectangular
plate with an arbitrarily located circular hole subjected to in-plane
bending moment

Jae-Hoon Kang n

Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756, South Korea

a r t i c l e i n f o

Article history:
Received 3 May 2014
Received in revised form
10 September 2014
Accepted 23 October 2014
Available online 31 October 2014

Keywords:
Perforated plate
Arbitrarily located circular hole
In-plane bending moment
Hoop stress
Airy stress function
Stress concentration factor

a b s t r a c t

Exact solutions for stresses, strains, and displacements of a rectangular plate with arbitrarily located
circular hole subjected to in-plane bending moment are investigated by two-dimensional theory of
elasticity using the Airy stress function. The present method of analysis is much simpler, but it produces
an exact solution, which is its great strength, than the methods used by previous researchers. The hoop
stresses occurring at the edge of the non-central circular hole are computed and plotted. The stress
concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size
of the non-central circular hole are tabularized.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous researchers have investigated the mechanical beha-
viors of perforated plates, with main concerns being classified into
three categories; stress concentration [1–29], vibration, buckling,
and fatigue. The various discrete methods have been used to study
them. The finite element method (FEM) is the most widely used
for this perforated plate problems. Diverse methods other than
FEM have been used like the complex varia.ble method, three-
dimensional stress analysis, the Ritz method, the boundary ele-
ment method, the differential quadrature element method, semi-
analytical solution method, experimental method, conjugate load/
displacement method, and Galerkin averaging method. Most of the
shapes of perforated holes have three types of circular, elliptical,
and rectangular cutout. Exact solutions for perforated plates with a
non-central circular hole loaded by in-plane moment have not
been reported.

In the present study, exact solutions for stresses, strains, and
displacements of a perforated rectangular plate by a non-central
circular hole subjected to in-plane bending moment are investi-
gated by two-dimensional theory of elasticity using the Airy stress
function. The hoop stresses occurring at the edge of the non-
central circular hole are computed and plotted. The stress

concentration factors (SCF) which is the maximum non-
dimensional hoop stresses, depending on the location and size of
the non-central circular hole are tabularized. Stress intensity factor
(SIF) is often confused with SCF. The SIF is a scaling factor used in
fracture mechanics to denote the stress intensity at the tip of a
crack of known size and shape.

2. Airy stress function

Fig. 1 shows a perforated rectangular plate of lateral dimen-
sions L� h by an arbitrarily located circular hole of radius of R
under in-plane bending moment M0 at X ¼ �L=2 and L/2. The
plate is assumed to be very large compared with the circular hole.
The origin of the rectangular coordinate system (X, Y) is located at
the center of the rectangular plate. The origins of the other
rectangular coordinate system (x, y) and the polar coordinate
one (r,θ) coincide with the center of the non-central circular hole.
The axes of x and y are parallel with X and Y axes, respectively. The
center of the non-central circular hole is located at ðX;YÞ ¼ ða; bÞ.

First of all, considering a rectangular plate with no hole
subjected to in-plane moment M0, the stress components through
the plate neglecting body forces are

σ0
XX ¼ ∂2ϕ0

∂Y2 ¼ �M0

I
Y ;σ0

XY ¼ � ∂2ϕ0

∂X∂Y
¼ 0;σ0

YY ¼ ∂2ϕ0

∂X2 ¼ 0 ð1Þ
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where ϕ0 is a fundamental Airy stress function; σ0
XX and σ0

YY are
the normal stresses in X and Y directions, respectively, and σ0

XY is
the shear stress; and Ið ¼ th3=12Þ is the second moment of inertia
of cross-sectional area of a rectangular plate with thickness of t.
The fundamental Airy stress function ϕ0 satisfies the governing
equation ∇4ϕ0 ¼∇2ð∇2ϕ0Þ ¼ 0 with no body forces in 2-D plane
problems in elasticity, where the Laplacian operator ∇2 is
expressed as

∇2 ¼ ∂2

∂X2þ
∂2

∂Y2 ð2Þ

and ∇4 is the bi-harmonic differential operator defined by ∇2ð∇2Þ
and becomes

∇4 ¼∇2ð∇2Þ ¼ ∂4

∂X4þ2
∂4

∂X2∂Y2þ
∂4

∂Y4 ð3Þ

in the rectangular coordinates (X,Y). From Eq. (1) the fundamental
Airy function ϕ0 can be assumed as

ϕ0 ¼ �M0

6I
Y3þAYþB ð4Þ

where A and B are arbitrary integration constants. Since the
relation of Y ¼ yþb, Eq. (4) becomes

ϕ0 ¼ �M0

6I
ðyþbÞ3þAðyþbÞþB ð5Þ

A linear function of x or y and a constant in the Airy stress
function are trivial terms which do not give rise to any stresses and
strains [30]. Dropping the trivial terms in Eq. (5), the fundamental
Airy stress function ϕ0 becomes

ϕ0 ¼ �M0

6I
ðy3þ3by2Þ ð6Þ

Using the relations of

y¼ r sin θ ð7Þ
and the multiple angles formulas

sin 2θ¼ 1� cos 2θ
2

ð8Þ

sin 3θ¼ 3 sin θ� sin 3θ
4

ð9Þ

The fundamental Airy stress function ϕ0 in Eq. (6) can be
transformed into the bi-harmonic functions in the polar coordi-
nates (r,θ) as below

ϕ0 ¼ �M0

24I
ð3r3 sin θ�r3 sin 3θ�6br2 cos 2θþ6br2Þ ð10Þ

which satisfies the governing equation ∇4ϕ0 ¼∇2ð∇2ϕ0Þ ¼ 0, where
∇2 is

∇2 ¼ ∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2 ð11Þ

and ∇4 ¼∇2ð∇2Þ is expressed as

∇4 ¼ ∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2

� �
∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2

� �
ð12Þ

in the polar coordinates (r,θ). From the following relations between
stresses and the Airy stress function, the stresses in the rectangular
plate with no hole subjected to in-plane momentM0 can be calculated
in the polar coordinates as below

σ0
rr ¼

1
r
∂ϕ0

∂r
þ 1
r2

∂2ϕ0

∂θ2 ¼ �M0

4I
ðr sin 3θþr sin θþ2b cos 2θþ2bÞ

ð13Þ

σ0
rθ ¼ � ∂

∂r
1
r
∂ϕ0

∂θ

 !
¼ �M0

4I
ðr cos 3θ�r cos θ�2b sin 2θÞ ð14Þ

σ0
θθ ¼

∂2ϕ0

∂r2
¼ �M0

4I
ð3r sin θ�r sin 3θ�2b cos 2θþ2bÞ ð15Þ

Let us return to the original problem of a rectangular plate with
a non-central circular hole. The total Airy function ϕ becomes

ϕ¼ϕ0þϕn ð16Þ
where ϕn is an Airy stress function to cancel unwanted traction
due to ϕ0 on r¼R. The normal and shear stresses on r¼R must be
free as below

σrrjr ¼ R ¼ ½σ0
rrþσn

rr�r ¼ R ¼ 0 ð17Þ

σrθ
��
r ¼ R ¼ ½σ0

rθþσn

rθ�r ¼ R ¼ 0 ð18Þ

Therefore, σn
rr and σn

rθ on r¼R must have terms of sin θ,
sin 3θ, cos 2θ, or a constant and have cos θ, cos 3θ, or sin 2θ,
respectively, in order to eliminate the stresses σ0

rr and σ0
rθ on r¼R

due
to ϕ0 in Eqs. (13) and (14). Tables 1 and 2 show the potential
candidates of the bi-harmonic functions for the present problem
from the tables by Dundurs [30], which contain stresses and
displacements of certain bi-harmonic functions in the polar
coordinates. However, the terms of r3 sin θ, r3 sin 3θ, r2 cos 2θ,
and r2 in the fundamental Airy stress function ϕ0 of Eq. (10) must
be excluded in ϕn in order not to disturb the traction in Eq. (1) at
infinity. The terms of r ln r sin θ, r2 ln r, and rθ cos θ give rise to
muti-valued displacements ur and/or uθ , in the directions of r and
θ, respectively. Singularity at infinity occurs in stresses and
displacements because of the terms of r4 cos 2θ and r5 sin 3θ.
Therefore, the total Airy stress function ϕ in Eq. (16) becomes

Fig. 1. A rectangular plate perforated by a non-central circular hole loaded by
in-plane moment M0.

Table 1
Stresses of potential candidates of bi-harmonic functions ϕ.

ϕ σrr σrθ σθθ

r2 2 0 2
ln r 1=r2 0 �1=r2

r2 ln r 2 ln rþ1 0 2 ln rþ3

r3 sin θ 2r sin θ �2r cos θ 6r sin θ

rθ cos θ �2 sin θ=r 0 0
r ln r sin θ sin θ=r � cos θ=r sin θ=r
sin θ=r �2 sin θ=r3 2 cos θ=r3 2 sin θ=r3

r2 cos 2θ �2 cos 2θ 2 sin 2θ 2 cos 2θ

r4 cos 2θ 0 6r2 sin 2θ 12r2 cos 2θ
cos 2θ=r2 �6 cos 2θ=r4 �6 sin 2θ=r4 6 cos 2θ=r4

cos 2θ �4 cos 2θ=r2 �2 sin 2θ=r2 0

r3 sin 3θ �6r sin 3θ �6r cos 3θ 6r sin 3θ

r5 sin 3θ �4r3 sin 3θ �12r3 cos 3θ 20r3 sin 3θ
sin 3θ=r3 �12 sin 3θ=r5 12 cos 3θ=r5 12 sin 3θ=r5

sin 3θ=r �10 sin 3θ=r3 6 cos 3θ=r3 2 sin 3θ=r3
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