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A B S T R A C T

In this paper, we consider the existence conditions of bounded motions of an infinitesimally small particle in the
spatial circular restricted three-body problem. In particular, by using the Jacobi integral that corresponds to the
inertial coordinate system, we prove a theorem on boundedness of motion that enables us to supplement the Hill
approach in the study of motion of an infinitesimally small particle.

1. Introduction

The circular restricted three-body problem (for mass points) is the
three-body problem considered in the case where one of these bodies
has a mass, which is so small that we can neglect the influence of this
mass on circular orbits of two other bodies [1,2]. Nevertheless, until
now, the three-body problem of this kind is still attractive for many
investigators who can suggest a lot of interesting applications of this
model [1,3–9].

As it was shown by Jacobi, the circular restricted three-body problem
has the first integral. Due to this property, Hill proved [10] the existence
of bounded motions for the small particle under the condition that the
level constant ℎ of the Jacobi integral is negative and |ℎ| exceeds a
critical value ℎ∗ > 0. In what follows, we call it the Hill condition. Under
this condition, the domain of possible motions of the infinitesimally
small particle is a union of the domain 𝜔𝐻 (the Hill domain), which
consists of motions bounded in coordinates, and the domain 𝜔𝑛𝑐 , which
consists of motions bounded in velocities, i.e., 𝜔 = 𝜔𝐻

⋃

𝜔𝑛𝑐 , and
moreover, 𝜔𝐻

⋂

𝜔𝑛𝑐 = ∅.
Possible examples of the domains 𝜔𝐻 and 𝜔𝑛𝑐 are schematically

shown in Figs. 1 and 2. Of course, their structure depends on |ℎ|
(for details, see [1]). In these figures, the axis 𝑂𝑧 is perpendicular to
their plane. The shaded part corresponds to the ‘‘forbidden’’ region,
where the motion of the small particle does not occur. We can see
that, unlike 𝜔𝐻 , the domain 𝜔𝑛𝑐 is not bounded and, in this domain,
the problem of boundedness of the motion of the small particle arises.
Nevertheless, in relation to the structure of 𝜔𝑛𝑐 we have the following
encouraging observation: the motions belonging to 𝜔𝑛𝑐 satisfy the
distality condition [11], which is extremely important in the framework
of the proposed approach.
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In what follows, the small particle motions belonging to the Hill
domain 𝜔𝐻 are called Hill-stable motions. Among these motions, in
addition to ones that are bounded in coordinates and velocity, there
are motions that are bounded in coordinates, but not bounded in
velocity, since these motions allow collisions between the small particle
and massive bodies. The trajectories corresponding to motions with
unbounded velocity will be referred to as special ones. In this case, as it
is known, one of the mutual distances is zero.

Nowadays, among all possible variants of the restricted problem, a
notable place is occupied by the Earth–Moon–Spacecraft system. Within
its framework, the Moon was intensively studied at the end of the last
century (USA, USSR). To save rocket propellant of space vehicles during
flights to the Moon and other objects of the solar system, it is quite
natural to use segments of special trajectories

In what follows, for the motions in the domain 𝜔𝑛𝑐 , where we have
no collisions and the distality condition is satisfied, it is important to
determine whether the motion is bounded in coordinates. As it was
shown by the author recently [12], if ℎ is negative and the absolute
value of ℎ is sufficiently large and if, additionally, 𝜔𝑛𝑐 ≠ ∅, i.e., under
the Hill condition, the motions in the domain 𝜔𝑛𝑐 are Lagrange stable
under the additional condition that the circular problem is planar.
Thus, in this case, the motions are bounded both in velocities and in
coordinates. In the present paper, we succeeded to extend Theorem 1
from [12] to the spatial case. In this connection it should be pointed
out that it is not possible to transfer automatically the proof of the
boundedness of motions in the domain 𝜔𝑛𝑐 in the planar case to the case
of spatial motions. To this end, we had to find an additional resource.
This resource was found in the structure of the Jacobi integral that
corresponds to the inertial coordinate system.
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Fig. 1. This figure shows the domains 𝜔𝐻 and 𝜔𝑛𝑐 .

Fig. 2. This figure shows the deformation of 𝜔𝐻 when |ℎ| decreases.

So, we consider the circular restricted three-body problem in the
case where the vectors 𝐫1 and 𝐫2, which are solutions of the two-body
problem, correspond to circular orbits of points with masses 𝑚1 and 𝑚2.
Passing over to relative vector lengths [13]:

𝝆𝑖 =
𝐫𝑖

|𝐫12|
, (1.1)

where |𝐫12| = |𝐫12|0 = const, we write down the motion equations in the
form

𝝆1
′′ = 𝜇

𝝆12

|𝝆12|
3
,

𝝆2
′′ = −(1 − 𝜇)

𝝆12

|𝝆12|
3
,

𝝆3
′′ = −(1 − 𝜇)

𝝆13

|𝝆13|
3
− 𝜇

𝝆23

|𝝆23|
3
.

(1.2)

Here, 𝝆𝑖𝑗 = 𝝆𝑗 − 𝝆𝑖 (𝑖, 𝑗 = 1, 2, 3), and the prime sign denotes the
differentiation operation with respect to dimensionless time

𝜏 =

√

𝐺(𝑚1 + 𝑚2)

|𝐫12|0
3∕2

𝑡,

where 𝐺 > 0 is the gravitation constant and

𝜇 =
𝑚2

𝑚1 + 𝑚2
, 0 < 𝜇 ≤ 1

2
.

Also, system (1.2) can be represented in the form

𝝆12
′′ = −

𝝆12

|𝝆12|
3
,

𝝆3
′′ = −(1 − 𝜇)

𝝆13

|𝝆13|
3
− 𝜇

𝝆23

|𝝆23|
3
.

(1.3)

Along with Eqs. (1.2) and (1.3), we also use equations that corre-
spond to a coordinate system rotating at a unit angular velocity about
an axis perpendicular to the plane of rotation of two massive bodies. In
this case, the second vector equation of system (1.3) takes the following
form [1]:

𝑥′′ − 2𝑦′ = 𝑥 − (1 − 𝜇)
𝑥 − 𝜇
𝜌313

− 𝜇
𝑥 + 1 − 𝜇

𝜌323
,

𝑦′′ + 2𝑥′ = 𝑦 − (1 − 𝜇)
𝑦
𝜌313

− 𝜇
𝑦
𝜌323

,

𝑧′′ = −(1 − 𝜇) 𝑧
𝜌313

− 𝜇 𝑧
𝜌323

.

(1.4)

Here, 𝜌13 = |𝝆13|, 𝜌23 = |𝝆23|,

𝝆2
13 = (𝑥 − 𝜇)2 + 𝑦2 + 𝑧2, 𝝆2

23 = (𝑥 + 1 − 𝜇)2 + 𝑦2 + 𝑧2, (1.5)

where (𝑥, 𝑦, 𝑧) are coordinates of the small particle with respect to the
rotating coordinate system. Let us denote (𝑥, 𝑦, 𝑧)𝑇 = 𝐫, (�̃�, �̃�, 𝑧)𝑇 = 𝝆3,
where (�̃�, �̃�, 𝑧) are coordinates of the small particle with respect to the
inertial coordinate system. Then we arrive at equality 𝐫2 = 𝝆2

3.
Further, it is convenient to rewrite equalities (1.5) as follows:

𝝆2
13 = −2𝜇𝑥 + 𝜇2 + 𝐫2, 𝝆2

23 = 2(1 − 𝜇)𝑥 + (1 − 𝜇)2 + 𝐫2, (1.6)

and this implies

𝐫2 = 𝝆2
3 = −𝜇(1 − 𝜇) + (1 − 𝜇)𝝆2

13 + 𝜇𝝆2
23. (1.7)

In connection with (1.7), we also note that we have

𝝆′2
3 = −𝜇(1 − 𝜇) + (1 − 𝜇)𝝆′2

13 + 𝜇𝝆′2
23. (1.8)

The Jacobi integral of system (1.4) has the following form:

𝑥′2 + 𝑦′2 + 𝑧′2 −
(

𝑥2 + 𝑦2
)

−
2(1 − 𝜇)
|𝝆13|

−
2𝜇
|𝝆23|

= 2ℎ, ℎ = const. (1.9)

2. A theorem on boundedness of motion

For our further study, we represent Jacobi integral (1.9) in the
initial inertial coordinate system. According to our notation, it takes
the following form [13]:

𝝆′
3
2 − 2(�̃��̃�′ − �̃��̃�′) − 2

(

1 − 𝜇
𝜌13

+
𝜇
𝜌23

)

= 2ℎ, (2.1)

and, after the change of variables

�̃� = 𝑥 cos 𝜏 − 𝑦 sin 𝜏,

�̃� = 𝑥 sin 𝜏 + 𝑦 cos 𝜏,

it turns into the equality

𝝆′
3
2 − 2(𝑥𝑦′ − 𝑦𝑥′) − 2

(

𝑥2 + 𝑦2 +
1 − 𝜇
𝜌13

+
𝜇
𝜌23

)

= 2ℎ. (2.2)

Also, it is possible to represent (2.1) in the form

𝝆′
3
2 − 2(𝝆3 × 𝝆′

3)∣𝑧 − 2
(

1 − 𝜇
𝜌13

+
𝜇
𝜌23

)

= 2ℎ, (2.3)

emphasizing that the expression (�̃��̃�′− �̃��̃�′) on the left-hand side of (2.1)
is the projection of the angular momentum (𝝆3 × 𝝆′

3) to the axis 𝑂𝑧 of
the inertial reference frame. In what follows, depending on the case
considered, we can use the most convenient form of equalities (2.1)–
(2.3).
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