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A B S T R A C T

Based on Gauss–Kronrod quadrature rule, this paper provides closed-form numerical formulae of the period,
periodic solution and Fourier expansion coefficients for a class of strongly nonlinear oscillators. Firstly, the
period derived in the form of definite integral is addressed by a new equation constructed according to the
fundamental theorem of calculus. Then, an approximate closed-form expression of the period can be established
by employing only a low-order Gauss–Kronrod quadrature formula. Changing the lower limit of the integral, the
closed-form expression becomes a numerical formula that can give the periodic solution of the system. After this,
according to the partial integration rule, the calculation of the Fourier coefficients is derived in a very concise
form. In general, the relative error of the approximate period can be reduced to 1e−6 only by employing a
31-point Kronrod rule. Error magnitude of the period indicates the maximum error level of the periodic solution
and Fourier coefficients. In addition, the proposed formulae are stable convergent and the exact solutions being
their convergence limits. Three very typical examples are given to illustrate the usefulness and effectiveness of
the proposed technique.

1. Introduction

The strongly nonlinear oscillator models arise in a large number of
actual physical systems, such as nonlinear roll of ships [1], nonlinear
response of sensor diaphragm [2] and nonlinear vibrations of mechan-
ical systems [3]. Therefore, the study of the method of dealing with
nonlinear differential equations has a long history.

Numerical methods are effective methods to deal with nonlinear
equations. Algorithm is the core of numerical analysis. For instance,
numerical integration constitutes a broad family of algorithms for
calculating the numerical value of a definite integral [4], which is
used to calculate the period of the nonlinear oscillator in traditional
applications. To obtain the time response of the nonlinear oscillator,
people often use the Runge–Kutta (RK) method. The RK methods are
a family of implicit and explicit iterative methods, which include the
routine called the Euler Method [5]. The RK computation procedure
is popular, but it cannot directly obtain the amplitude- and phase–
frequency response curves of the forced and damped system without
the aid of a discrete signal sampling and analysis program. In addition,
if one need to obtain unstable solutions and bifurcation points, the
numerical continuation software such as MATCONT is essential. For the
free oscillation system, the Fourier expansion coefficients of periodic
solution are useful for examining resonance phenomena under periodic
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or quasiperiodic forcing [6]. The traditional numerical methods usually
use the discrete Fourier transform programs DFT or FFT after obtaining
the discrete periodic solution. Therefore, it will be a complicated process
to obtain a curve in which the Fourier coefficient continuously changes
with the initial amplitude. In contrast, analytical methods have their
unique advantages in nonlinear analysis. One of the advantages is
that the given formulae are presented in a closed form. Nonetheless,
analytical procedures are still complicated and require more extensive
mathematical research.

In classical analytic methods, the perturbation theory is most famous
and has been widely used [7,8]. Due to the dependence on small
parameters, the perturbation method is usually applied only to weakly
nonlinear problems. But there are still some improved methods that
have been proposed so that the perturbation method can be extended
to strong nonlinear systems [9–11]. However, these methods still
have their own limitations. Therein, a relevant study was proposed
by Amore and his collaborators [12,13], which used the principle
of minimal sensitivity to address the period of strongly nonlinear
oscillators. Recently, an important new method called multiple scales
Lindstedt–Poincare was proposed to address both free undamped and
forced damped cubic–quintic Duffing oscillator [14,15], which can
provide acceptable solutions for the case of strong nonlinearities.
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Another most commonly used method is the harmonic balance (HB)
method [16]. This method is not limited by small parameters, but due
to the use of iterative method, it is difficult to construct higher-order
analytical approximations. Various improved HB methods have been
proposed by researchers [17–19]. One of the representative methods
was proposed by Wu et al. [20]. Their technique incorporates salient
features of Newton’s method and the HB method, having excellent
accuracy of both period and corresponding periodic solution for the
entire range of oscillation amplitude. However, it is still necessary to
obtain higher-order Fourier approximations by iterative method.

There is also a very important method named homotopy analysis
method (HAM) [21,22]. The HAM employed the concept of the homo-
topy from topology and, by introducing a non-zero auxiliary parameter
and employing a general zero-order deformation equation, generated
a convergent series solution for nonlinear systems. In essence, HAM
completely abandons the small parameters and is really applicable to
strongly nonlinear problems. But in a sense, HAM is a semi-analytical
technique based on computer and symbolic computing software, that is,
if there is no computer and symbolic computing software, it is difficult
to obtain a sufficient high-order approximate solution for strongly
nonlinear problems [23].

In summary, the disadvantage of the numerical method is that the
results are usually given directly as discrete values, and the disad-
vantages of the analytical method lie in its complicated process and
mathematical restrictions, which makes it difficult to achieve higher
accuracy. Different from the previous methods, this paper presents
a new numerical technique which gives closed-form expressions of
the period, periodic solution and Fourier expansion coefficients for a
class of strongly nonlinear oscillators. This technique has the efficiency
and high accuracy of numerical methods and has the characteristic of
stable convergence with the exact solution as the limit. The closed-form
formulae are given so that they can make the relevant parameters of
the strongly nonlinear oscillator become known variables, which can
be introduced into the forced and damped equation for derivation and
operation. This provides a new possibility for nonlinear analysis, which
is different from the traditional numerical methods.

This paper is organized as follows. In Section 2, we introduce the
closed-form expressions of the period, periodic solution and coefficients
of Fourier expansion. A detailed description for the accuracy, error
tolerance and convergence of the closed-form formulae is given in
Section 3. Three very typical examples are given in Section 4 to further
demonstrate the efficiency and accuracy of the formulae. The conclusion
is made in Section 5.

2. Mathematical modeling

2.1. Approximate closed-form expression of the period

Consider a one-dimensional oscillatory system governed by

�̈� + 𝑓 (𝑥) = 0, �̇� (0) = 0, 𝑥 (0) = 𝐴 (1)

where the nonlinear restoring force 𝑓 (𝑥) is odd, i.e. 𝑓 (−𝑥) = −𝑓 (𝑥) and
satisfies 𝑥𝑓 (𝑥) > 0 for 𝑥 ∈ [−𝐴,𝐴], 𝑥 ≠ 0. A is the oscillation amplitude.
Because �̈� = �̇� (𝑑�̇�∕𝑑𝑥), we have
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where 𝐹 (𝑥) is the antiderivative of the integrable function 𝑓 (𝑥) over the
interval [0, A]. Then the period of vibration is obtained as
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Clearly, the integrand has a singularity at 𝑥 = 𝐴, where its value tends
to +∞.

Generally, the integrand cannot be integrated in closed form. There-
fore, numerical integration methods are necessary for the period cal-
culation. In numerical analysis, Gaussian quadrature rule is preferred
for the approximation of the definite integral of a singularity function,
usually stated as a weighted sum of function values at specified points
within the domain of integration, namely
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where 𝜔𝑗 , 𝜒𝑗 are the weights and nodes at which to evaluate the function
g(x). The evaluation points 𝜒𝑗 are the roots of a polynomial belonging to
a class of orthogonal polynomials. In general, higher order estimates can
be calculated by increasing the degree of the polynomial. However, for
the integrand in Eq. (3), even if the number of Gauss nodes has greatly
increased, the estimation error of Gaussian quadrature is still difficult
to reduce to the ideal value. This is entirely because the value of the
integrand is infinite at the singularity so that it cannot be well evaluated
by even higher degree polynomials. Hence, in the conventional method,
higher order quadrature rule together with interval subdivision and
adaptive algorithm are necessary for approximating the exact result.

In order to facilitate analysis, we consider changing the integrand
in Eq. (3) to a form that does not contain singularities, so that a high
accuracy closed-form expression of the period can be constructed using
only low-order Gaussian quadrature formulae.

Firstly, we construct a function that has the expression of
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The both sides differentiation of Eq. (5) gives
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where (′) denotes differentiation with respect to 𝑥. Its definite integral
over [0, 𝐴] is
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Therefore, the definite integral in Eq. (3) can be calculated as follows:
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Due to the derivative of the function 𝐹 (𝑥) with respect to the variable
𝑥 can be defined as
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there is

𝐹 ′ (𝑥) (𝐴 − 𝑥) = 𝐹 (𝐴) − 𝐹 (𝑥) − 𝑜 (𝐴 − 𝑥) (10)

where 𝑜 (𝐴 − 𝑥) is a higher-order infinitesimal. Therefore, as 𝑥 → 𝐴, the
integrand in Eq. (8) satisfies
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The singularity is eliminated.
In this paper, we select Gauss–Kronrod quadrature rule to approx-

imate the definite integral in Eq. (8). Before applying the quadrature
rule, the integral over [0, 𝐴] must be changed into the integral over [-1,
1]. Assuming that
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