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A B S T R A C T

This work investigates the propagation of non-linear shear horizontal (SH) waves in a layer of finite depth
overlying a rigid substratum. We assume that the layer consists of heterogeneous, isotropic, and incompressible
hyper-elastic materials. By using the method of multiple scales, we show that the self-modulation of non-linear
SH waves is governed by the non-linear Schrödinger (NLS) equation. Using known properties of solutions of NLS
equation, we find that bright solitary SH waves can exist depending on the non-linear constitution of the layer.
Consequently, not only the effect of the heterogeneity but also the effect of the non-linearity on the deformation
field is discussed for these waves.

1. Introduction

Elastic waves are not dispersive in an unbounded homogeneous
medium, but they become dispersive under repeated processes occurring
at the boundaries of wave guides [1,2]. Dispersive elastic waves have
found many important applications in certain areas such as seismology,
geophysics, nondestructive inspection of material surfaces, and elec-
tronic signal processing devices. More information about applications
and for reviews, we refer to Ewing [2], Achenbach [3], Farnell [4], and
Maugin [5].

The effect of constitutional non-linearity on the propagation charac-
teristics of dispersive elastic waves has been studied by many investi-
gators such as Teymur [6–8], Maugin and Hadouaj [9], Mayer [10],
Fu [11], Porubov and Samsonov [12], Ferreira and Boulanger [13],
Pucci and Saccomandi [14], Ahmetolan and Teymur [15,16], Destrade
et al. [17], Teymur et al. [18], and Demirkus and Teymur [19].
In [19], the propagation of non-linear shear horizontal (SH) waves in a
homogeneous, isotropic, and compressible hyper-elastic layer overlying
a rigid substratum was investigated. Moreover, the propagation of linear
Love waves in a heterogeneous media was discussed by Hudson [20] and
Avtar [21].

The aim of this work is to study the propagation of non-linear
SH waves in a heterogeneous, isotropic, and incompressible hyper-
elastic layer overlying a rigid substratum. Heterogeneity is varied with
the depth hyperbolically, and uniform in any direction parallel to
the boundaries. We use the method of multiple scales and strike a
balance between the non-linearity and dispersion in the asymptotic
analysis, to derive a non-linear Schrödinger (NLS) equation describing
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a self-modulation of non-linear SH waves. After investigating the self-
modulation, we discuss the effect of the non-linearity on the propagation
characteristics of SH waves via NLS equation. We find that the existence
of bright solitary SH waves depends on the non-linear constitution of
the layer. As a result, not only the effect of the heterogeneity but also
the effect of the non-linearity on the deformation field is considered for
bright solitary SH waves.

2. Formulation of the problem

The spatial and material coordinates of a point referred to the same
rectangular Cartesian system of axes are (𝑥1, 𝑥2, 𝑥3) and (𝑋1, 𝑋2, 𝑋3),
respectively. We consider a layer of uniform thickness ℎ > 0, lying on a
rigid semi-infinite substratum. The layer is in the region between the
planes 𝑋2 = 0 and 𝑋2 = ℎ. In addition, a semi-infinite substratum
occupies the region 𝑋2 < 0. We consider waves of SH type, so
displacements in the 𝑋1- and 𝑋2-directions are taken equal to zero.
Moreover, the motion is assumed to be uniform in the 𝑋3-direction. The
displacement in the 𝑋3-direction is zero at the rigid boundary 𝑋2 = 0.
Furthermore, the boundary 𝑋2 = ℎ is assumed to be free of traction.
Therefore, an SH wave described by

𝑥𝑘 = 𝑋𝐾𝛿𝑘𝐾 + 𝑢3(𝑋𝛥, 𝑡)𝛿𝑘3 (1)

is assumed to propagate along 𝑋1-axis where 𝑢3 = 𝑢3(𝑋𝛥, 𝑡) is the
displacement in the 𝑋3-direction, 𝑡 is the time, and 𝛿𝑘𝐾 is the usual
Kronecker symbol. Latin and Greek indices have the respective ranges
(1, 2, 3) and (1, 2), and also the summation convention on repeated
indices is implied in (1) and in the sequel. Subscripts preceded by a
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comma indicate partial differentiation with respect to material or spatial
coordinates.

In the absence of body forces, the equations of the motion in the
reference state are

𝑇𝛥𝛽,𝛥 + 𝑇3𝛽,3 = 0, 𝑇𝛥3,𝛥 + 𝑇33,3 = 𝜌�̈�3 (2)

where 𝑇𝐾𝑘 are the components of the first Piola–Kirchhoff stress tensor
field accompanying the deformation field (1), a dot over 𝑢3 indicates
partial differentiation with respect to 𝑡, and 𝜌 = 𝜌(𝑋𝛥) is the density of
the layer. The boundary conditions can be written as

𝑇2𝑘 = 0 on 𝑋2 = ℎ and 𝑢3 = 0 on 𝑋2 = 0. (3)

The components of the deformation gradient tensors 𝑥𝑘,𝐾 and 𝑋𝐾,𝑘
are as given in the list below

𝑥𝛼,𝛥 = 𝛿𝛼𝛥, 𝑥𝛼,3 = 0, 𝑥3,𝛥 = 𝑢3,𝛥, 𝑥3,3 = 1, (4)

𝑋𝛥,𝛼 = 𝛿𝛥𝛼 , 𝑋𝛥,3 = 0, 𝑋3,𝛼 = −𝑢3,𝛥𝛿𝛥𝛼 , 𝑋3,3 = 1 (5)

for the deformation field (1) which is isochoric, i.e. 𝑗 = det𝑥𝑘,𝐾 =
1. In addition to using the components (4) and (5), if the relations
𝑡𝑘𝑙 = 𝑗−1𝑥𝑘,𝐾𝑇𝐾𝑙 and 𝑇𝐾𝑙 = 𝑗𝑋𝐾,𝑘𝑡𝑘𝑙 are taken into consideration, then
the components of the Cauchy stress tensor 𝑡𝑘𝑙 and of the first Piola–
Kirchhoff stress tensor 𝑇𝐾𝑙 can be written as

𝑡𝛼𝛽 = 𝛿𝛼𝛥𝑇𝛥𝛽 , 𝑡𝛼3 = 𝛿𝛼𝛥𝑇𝛥3,

𝑡3𝛽 = 𝑢3,𝛥𝑇𝛥𝛽 + 𝑇3𝛽 , 𝑡33 = 𝑢3,𝛥𝑇𝛥3 + 𝑇33, (6)
𝑇𝛥𝛽 = 𝛿𝛥𝛼𝑡𝛼𝛽 , 𝑇𝛥3 = 𝛿𝛥𝛼𝑡𝛼3,

𝑇3𝛽 = −𝑢3,𝛥𝛿𝛥𝛼𝑡𝛼𝛽 + 𝑡3𝛽 , 𝑇33 = −𝑢3,𝛥𝛿𝛥𝛼𝑡𝛼3 + 𝑡33, (7)

respectively. Therefore, the equations of the motion (2) in terms of 𝑡𝑘𝑙
are expressed as follows:

(𝛿𝛥𝛼𝑡𝛼𝛽 ),𝛥 + (−𝑢3,𝛥𝛿𝛥𝛼𝑡𝛼𝛽 + 𝑡3𝛽 ),3 = 0,

(𝛿𝛥𝛼𝑡𝛼3),𝛥 + (−𝑢3,𝛥𝛿𝛥𝛼𝑡𝛼3 + 𝑡33),3 = 𝜌�̈�3. (8)

If the layer consists of hyper-elastic materials, there exists a strain
energy function 𝛴 which gives the mechanical properties of the con-
stituent materials, and stress constitutive equations can be given by

𝑇𝐾𝑘 =
𝜕𝛴
𝜕𝑥𝑘,𝐾

. (9)

We consider that the constitutive materials are isotropic and hetero-
geneous, so 𝛴 is the function of the principal invariants of the Finger
deformation tensor 𝐜−1 and 𝑋𝛥, as

𝐼 = tr𝐜−1, 2𝐼𝐼 = (tr𝐜−1)2 − tr(𝐜−2), 𝐼𝐼𝐼 = det𝐜−1 (10)

and calculated on the deformation field (1) as

𝐼 = 𝐼𝐼 = 3 +𝐾2, 𝐼𝐼𝐼 = 1 (11)

where 𝐾2 = 𝑢3,𝛥𝑢3,𝛥.
Let us now assume that the heterogeneity is varied only with the

depth and uniform in any direction parallel to the boundaries and
consider generalized neo-Hookean materials. Hence, the strain energy
function 𝛴 has a form

𝛴 = 𝛴(𝐼,𝑋2). (12)

Then the stress constitutive equations are

𝑡𝑘𝑙 = 2𝑑𝛴
𝑑𝐼

(−𝛿𝑘𝑙 + 𝑐−1𝑘𝑙 ) (13)

where 𝑐−1𝑘𝑙 = 𝑥𝑘,𝐾𝑥𝑙,𝐾 are the components of Finger deformation tensor,
found for the deformation field (1) as follows:

𝑐−1𝛼𝛽 = 𝛿𝛼𝛥𝛿𝛽𝛥, 𝑐−1𝛼3 = 𝛿𝛼𝛥𝑢3,𝛥, 𝑐−13𝛽 = 𝑢3,𝛥𝛿𝛽𝛥, 𝑐−133 = 1 +𝐾2. (14)

By substituting (14) into (13), the stress constitutive equations for (1)
are found to be

𝑡𝛼𝛽 = 0, 𝑡𝛼3 = 2𝑑𝛴
𝑑𝐼

𝛿𝛼𝛥𝑢3,𝛥, 𝑡3𝛽 = 2𝑑𝛴
𝑑𝐼

𝑢3,𝛥𝛿𝛽𝛥, 𝑡33 = 2𝑑𝛴
𝑑𝐼

𝐾2. (15)

We assume that 𝛴 is an analytic function of 𝐼 around 3; then its
Taylor series can be written as

𝛴(𝐼,𝑋2) = (1∕1!)𝛴′(3, 𝑋2)(𝐼 − 3) + (1∕2!)𝛴′′(3, 𝑋2)(𝐼 − 3)2 + ⋅ ⋅ ⋅ (16)

where the prime means ordinary differentiation with respect to 𝐼 .
In addition, all coefficients are differentiable functions of 𝑋2, and
𝛴(3, 𝑋2) = 0. We thus have

𝛴′(𝐼,𝑋2) = 𝛴′(3, 𝑋2) + 𝛴′′(3, 𝑋2)𝐾2 + ⋅ ⋅ ⋅ (17)

When we substitute (17) into (15), the stress constitutive equations can
be expressed as follows:

𝑡𝛼𝛽 = 0, 𝑡33 = 2𝛴′(3, 𝑋2)𝐾2 + (𝐾4),

𝑡𝛼3 = 2
[

𝛴′(3, 𝑋2) + 𝛴′′(3, 𝑋2)𝐾2] 𝛿𝛼𝛥𝑢3,𝛥 + (𝐾4),

𝑡3𝛽 = 2
[

𝛴′(3, 𝑋2) + 𝛴′′(3, 𝑋2)𝐾2] 𝑢3,𝛥𝛿𝛽𝛥 + (𝐾4). (18)

Even though the materials are generalized neo-Hookean in this work,
a similar job can be completed successfully for compressible or incom-
pressible materials under certain restrictions for homogeneous case, as
done in [6,7]. At the end of procedure for the anti-plane motion, the
first two equations in (8) are satisfied identically, and the third equation
becomes
{

2
[

𝛴′(3, 𝑋2) + 𝛴′′(3, 𝑋2)𝐾2] 𝑢3,𝛥 + (𝐾4)
}

,𝛥 = 𝜌�̈�3 (19)

where 𝜌 = 𝜌(𝑋2). Let 𝑋 = 𝑋1, 𝑌 = 𝑋2, 𝑍 = 𝑋3, and 𝑢 = 𝑢3 be.
Since our aim is to deal with small but finite amplitude wave motions,
proceeding with the approximate equations, rather than the exact ones,
will be more convenient. Then the approximate governing equation and
boundary conditions involving terms not higher than the third degree
in the deformation gradients are written as

𝜕2𝑢
𝜕𝑡2

− 𝑐2𝑇

(

𝜕2𝑢
𝜕𝑋2

+ 𝜕2𝑢
𝜕𝑌 2

)

− 1
𝜌
𝜕(𝜌𝑐2𝑇 )
𝜕𝑌

𝜕𝑢
𝜕𝑌

= 𝑛𝑇
[ 𝜕
𝜕𝑋

( 𝜕𝑢
𝜕𝑋

(𝑢)
)

+ 𝜕
𝜕𝑌

( 𝜕𝑢
𝜕𝑌

(𝑢)
)]

+
(𝑢)
𝜌

𝜕(𝜌𝑛𝑇 )
𝜕𝑌

𝜕𝑢
𝜕𝑌

, (20)

𝜕𝑢
𝜕𝑌

+
𝑛𝑇
𝑐2𝑇

(𝑢) 𝜕𝑢
𝜕𝑌

= 0 on 𝑌 = ℎ and 𝑢 = 0 on 𝑌 = 0, (21)

where the linear shear wave velocity 𝑐𝑇 =
√

𝜇∕𝜌, the non-linear material
function 𝑛𝑇 , and (𝑢) are defined by

𝑐2𝑇 = 2
𝜌
𝛴′(3, 𝑌 ), 𝑛𝑇 = 2

𝜌
𝛴′′(3, 𝑌 ), and (𝑢) =

( 𝜕𝑢
𝜕𝑋

)2
+
( 𝜕𝑢
𝜕𝑌

)2
, (22)

respectively. It can be observed that the functions 𝜇, 𝜌 and 𝑛𝑇 are not
constants in this case, whereas these functions are constants in [19].
Furthermore, the constituent material of the layer softens in shear if
𝑛𝑇 < 0 and hardens if 𝑛𝑇 > 0. When 𝑛𝑇 = 0 in Eq. (20), we recover
the governing equation for the linear SH waves [2]. In our analysis, the
non-linear material function 𝑛𝑇 is a differentiable function of 𝑌 and the
following choices on the functions 𝜇 and 𝜌;

𝜇 = 𝜇0cosh
2(𝛼𝑌 ), 𝜌 = 𝜌0cosh

2(𝛼𝑌 ) (23)

are made. Here, 𝜇0 and 𝜌0 are constants, and 𝛼 is a parameter. The
choices (23) are also used in [21]. The following sections will be based
upon all discussions and assumptions above.

3. Self-modulation of non-linear SH waves

Now we investigate the self-modulation of non-linear SH waves
with small but finite amplitude in a layer overlying a rigid substratum
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