
International Journal of Non-Linear Mechanics 102 (2018) 82–91

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

The Rayleigh–van der Pol oscillator on linear multibody systems
René Bartkowiak *, Christoph Woernle
University of Rostock, Chair of Technical Mechanics/Dynamics, 18051 Rostock, Germany

A R T I C L E I N F O

Keywords:
Synchronization
Self-sustained oscillator
Nonlinear oscillations
Energy harvesting
Vibration absorption

A B S T R A C T

In nature many interactions of different oscillatory systems can be described by the phenomenon of syn-
chronization. This phenomenon can be widely used for engineering applications. In this contribution, the
synchronization between a self-sustained oscillator and linear multibody systems with harmonic force excitation
is used successfully to damp unwanted vibrations of the host structure and additionally to harvest energy from
the load. To this end, the parameters of the Rayleigh–van der Pol oscillator are adjusted to a given harmonic base
excitation in such a way that the response is harmonic as well. Thereby the amplitude of the response and the
phase-shift between the excitation and the oscillator response remain free. Afterwards the oscillator is attached
to a forced multibody system and the amplitude and phase-shift are adjusted for the tasks of vibration absorption
and energy harvesting.

1. Introduction

Classical tuned mass dampers (TMD) have been successfully used
for the suppression of unwanted vibrations of dynamically loaded
structures [1]. The drawback of passive TMDs is that they become
detuned when the parameters of the host structure change. To avoid
such detuning, active TMDs with adaptive stiffness and damping ratio
were developed. A disadvantage of active TMDs is the necessity of an
external power supply. Therefore, newer approaches to active TMDs
harvest and accumulate energy from the loaded structure, enabling self-
sufficient operation [2,3].

In the most approaches, the parameters of the mass damper are
always tuned for desired stationary solutions of the whole system. To
improve the transient behavior, the TMDs can be replaced by actively
controlled self-sustained oscillators with the same stationary behavior.
Then the oscillator can synchronize with the system motion, and the
stationary solution of the whole system can be reached much faster due
to the nonlinear damping behavior of the oscillator.

Self-sustained oscillators are autonomous dynamical systems with
a stable limit cycle in phase space. Because of this, oscillators have
stable periodic motions with a fundamental angular frequency 𝜔o, called
natural or partial angular frequency, and a free phase angle, depending
on the initial conditions. If the oscillator is forced by a harmonic force
with the angular excitation frequency 𝛺, which can be regarded as the
most simple case of synchronization [4], then the fundamental angular
frequency of the driven oscillator 𝜔d𝑟 can become a multiple of the
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driving angular frequency 𝛺, thus 𝜔d𝑟 = 𝑘
𝑝𝛺, with the whole num-

bers 𝑘, 𝑝 called 𝑘∕𝑝-synchronization [5]. Here only 1∕1-synchronization
is considered. If 1∕1-synchronization exists and is stable, then a constant
phase-shift 𝛥𝛼 exists between the first harmonic of the oscillator motion
and the excitation, also called phase-locking. If the natural angular
frequency of the autonomous oscillator equals the angular excitation
frequency, thus 𝜔o = 𝛺, then the synchronized oscillator motion can
be in-phase or in anti-phase to the excitation, thus 𝛥𝛼 = 0 or 𝛥𝛼 =
𝜋, depending on the parameters of the oscillator and the strength of
excitation. In both cases the energy transfer between the excitation and
the oscillator, averaged over the period 2𝜋

𝛺 , is zero. In case of differing
frequencies, 𝜔o ≠ 𝛺, also called detuning, a positive or negative angle
of lag from the in-phase or anti-phase motion occurs, and energy is
transferred between the excitation and the oscillator.

In [6] it was shown that the parameters of the Rayleigh–van der Pol
(RvdP) oscillator [7] can be adapted to a given harmonic excitation
in such a way that the oscillator steady state response is harmonic
as well, whereby the amplitude and the constant phase shift between
the excitation and the response of the oscillator can be arbitrarily
prescribed. If this oscillator is now attached to a mass of a linear
multibody system, the motion of this coupling mass can be seen as a base
excitation of the oscillator. Exciting the multibody system by an external
excitation force yields to a harmonic vibration behavior of the coupling
mass and by this to a harmonic response of the RvdP oscillator. Since
the amplitude and the phase shift of the oscillator response can be freely
defined by its parameters, the interaction of the oscillator response and
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Fig. 1. RvdP oscillator with base excitation 𝑥1(𝑡).

the multibody system can be used for active vibration absorption of the
excited multibody system as well as for energy harvesting.

In this contribution, the synchronization between the nonlinear RvdP
oscillator and the motion of a harmonically forced linear multibody
system is studied. To this end, the parameters of the RvdP oscillator
are adjusted for the tasks of active vibration absorption as well as for
energy harvesting.

The paper is organized as follows: In Section 2 the parameters of the
RvdP oscillator are derived for a given harmonic base excitation in such
a manner that the synchronized steady-state oscillation is harmonic as
well. Thereby the amplitude and phase angle of the oscillator motion
remain free parameters. In Section 3, the obtained oscillator is attached
to a mass–spring–damper system with harmonic force excitation. After
solving the existence conditions for 1∕1-synchronization, the stabil-
ity area of the synchronization is studied. Then the amplitude and
phase angle of the oscillator motion are adjusted for the vibration
absorption task and the energy harvesting task, respectively, taking
the existence and stability condition of synchronization into account.
Section 4 generalizes these results for an RvdP oscillator attached
to a general linear multibody system with harmonic force excitation.
Although the topology of the multibody system is not specified, the
existence conditions for 1∕1-synchronization and predictions for the
stability during vibration absorption mode and energy harvesting mode
can be determined. Results are visualized by numerical examples.

2. The driven Rayleigh–van der Pol oscillator

Let us consider the system in Fig. 1 comprising a mass 𝑚o described
by coordinate 𝑥o, a state-dependent force element 𝑆(𝑥o, 𝑥̇o) and a
harmonic base excitation 𝑥1(𝑡) = 𝑥̂1 cos(𝛺𝑡 + 𝛼1) with the constant
amplitude 𝑥̂1, the constant angular excitation frequency 𝛺 and the phase
angle 𝛼1.

By using the speed gradient method [8] a state-dependent control
law 𝑆(𝑥o, 𝑥̇o) can be obtained that guarantees asymptotically stable
periodic motions 𝑥o(𝑡) or limit cycles of the unforced system, thus 𝑥̂1 = 0.
Here, the force element is composed by a virtual linear spring element
with stiffness coefficient 𝑐o and a virtual nonlinear damping element,

𝑆(𝑥o, 𝑥̇o) = 𝑆damp(𝑥o, 𝑥̇o) − 𝑐o𝑥o. (1)

The equation of motion for the autonomous system according to Fig. 1
with 𝑥̂1 = 0 then reads

𝑚o𝑥̈o + 𝑐o𝑥o = 𝑆damp(𝑥o, 𝑥̇o). (2)

In order to obtain asymptotically stable periodic motions, a control-
Lyapunov function is defined by

𝑄 = 1
2
(𝐻(𝑥o, 𝑥̇o) −𝐻o)2 (3)

with the total energy of the system 𝐻(𝑥o, 𝑥̇o) =
1
2𝑚o𝑥̇2o +

1
2 𝑐o𝑥

2
o and the

desired constant energy 𝐻o > 0. Fulfilling the requirement 𝑄̇ < 0 the
control scheme

𝑆damp(𝑥o, 𝑥̇o) ≡ −𝛾 𝜕𝑄̇
𝜕𝑆damp

= −𝛾(𝐻(𝑥o, 𝑥̇o) −𝐻o)𝑥̇o

= −
𝛾
2
(𝑚o𝑥̇

2
o + 𝑐o𝑥

2
o − 2𝐻o)𝑥̇o (4)

with the gain parameter 𝛾 > 0 can be used to achieve asymptotically
stable periodic motions of the unforced system. Due to the special form
of differential equation (2) these periodic motions are harmonic.

In case of the harmonically forced system, the state-dependent force

𝑆(𝑥o, 𝑥̇o) = −
𝛾
2
(𝑚o𝑥̇

2
o + 𝜈𝑚o𝑥

2
o − 2𝐻o)𝑥̇o − 𝑐o𝑥o (5)

with the additional, yet unknown factor 𝜈 > 0, can lead to an
asymptotically stable harmonic response, if the parameters of the
oscillator 𝜈,𝐻o, 𝑐o are adapted to the excitation, see [6] for details.
The equation of motion of the excited system according to Fig. 1 then
becomes

𝑚o𝑥̈o +
𝛾
2
(𝑚o𝑥̇

2
o + 𝜈𝑚o𝑥

2
o − 2𝐻o)𝑥̇o + 𝑐o𝑥o = 𝑚o 𝛺

2𝑥̂1 cos(𝛺𝑡 + 𝛼1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−𝑥̈1

. (6)

It describes a driven Rayleigh–van der Pol oscillator with in general
periodic but non-harmonic response.

In [6] it was shown that the parameters of the oscillator 𝜈,𝐻o, 𝑐o can
be adapted to the base excitation 𝑥1(𝑡) with arbitrary phase angle 𝛼1 in
such a manner that the 1∕1-synchronization has the exact steady state
response 𝑥o(𝑡) = 𝑥̂o cos𝛺𝑡, where the amplitude 𝑥̂o is a free parameter.
Introducing the desired harmonic response 𝑥o(𝑡) = 𝑥̂o cos𝛺𝑡 into (6) and
balancing of the coefficients of the harmonics yields

0 = 𝑎1 sin𝛺𝑡 + 𝑏1 cos𝛺𝑡 + 𝑎3 sin 3𝛺𝑡 + 𝑏3 cos 3𝛺𝑡 (7)

with the coefficients of the harmonics

𝑎1 = −
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8
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(8)

If the coefficients (8) vanish, the system has a harmonic response
under 1∕1-synchronization. This is fulfilled for the parameters

𝜈 = 𝛺2, (9)

𝑐o = 𝑚o 𝛺
2 𝑥̂o + 𝑥̂1 cos 𝛼1

𝑥̂o
, (10)

and

𝐻o = 𝑚o
𝛾 𝛺2 𝑥̂3o − 2𝛺𝑥̂1 sin 𝛼1

2𝛾 𝑥̂o
(11)

Introducing the solutions for the parameters (9) to (11) into (6) yields
the differential equation of the RvdP oscillator with harmonic response
under 1∕1-synchronization,
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𝑐o

𝑥o

= 𝑚o 𝛺
2𝑥̂1 cos(𝛺𝑡 + 𝛼1).

(12)

Since system (12) shows 1∕1-synchronization for arbitrary values
of 𝑥̂o, 𝑥̂1, 𝛺 and 𝛼1, the solutions for the parameters (9) to (11) are called
the existence conditions for 1∕1-synchronization.

To study the stability of 1∕1-synchronization, the nonlinear equation
of the oscillator (12) is harmonically linearized into the form

𝑚o𝑥̈o + 𝑑o𝑥̇o + 𝑐o𝑥o = 𝑚o𝛺
2𝑥̂1 cos(𝛺𝑡 + 𝛼1) (13)
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