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A B S T R A C T

A new theoretical model is developed for the three-dimensional (3D) nonlinear vibration analysis of fluid-
conveying cantilevered micropipes. Particular attention is given on the derivation and analysis of the reduced
equations, and the small-scale effect on the periodic motions. Based on the modified couple stress theory (MCST),
the governing equations are derived by using Hamilton’s principle. The material length scale parameter and
large-deflection-induced geometric nonlinearities given by the Lagrangian strain tensor are incorporated into
the governing equations. Utilizing the center manifold theory, normal form method and O(2) symmetry, the
original governing equations can be rigorously reduced to a two-degree-of-freedom (2DOF) dynamical system.
Then two possible types of periodic motions, i.e. planar periodic and spatial periodic motions, together with
their stabilities are investigated by means of averaging methods and numerical simulations. Results show that
the larger the dimensionless material length scale parameter is, the wider the region of mass ratio for stable
planar periodic motion is. Particularly, the presence of small length scale parameter makes micropipes be more
likely to oscillate in a plane. It is also shown that for mass ratio corresponding to the hysteresis of the curves of
critical flow velocity versus mass ratio, the stabilities for bifurcating periodic motions at lower, moderate and
higher critical flow velocities may be different.

1. Introduction

Cantilevered pipes conveying fluid have been studied extensively [1–
9]. The literature on the nonlinear dynamics of cantilevered pipes was
mainly concerned with two-dimensional (2D) models. However, the
literature concerning the three-dimensional (3D) oscillations of fluid-
conveying cantilevered pipes is relatively limited. The earliest work
contributed to the 3D models of fluid-conveying cantilevered pipes is
due to Lundgren et al. [10], who derived a 3D version of nonlinear
governing equations by using the force balance method. By means of
the center manifold and normal form techniques, Bajaj et al. [11] found
that cantilevered pipes conveying fluid can develop either 2D or 3D limit
cycle motion after losing its original stability through a supercritical
Hopf bifurcation, showing that the type of oscillations depends on
the mass ratio parameter 𝛽 [defined later, in Eq. (30)]. Indeed, in
the past several years, a few papers have dealt with the 3D motions
of cantilevered pipes conveying fluid. Using the modified Hamilton
principle developed by Benjamin [8], Wadham-Gagnon et al. [12]
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derived a set of 3D nonlinear equations for a cantilevered pipe conveying
fluid in the presence of an additional mass or spring attached to it.
Based on this model, the 3D motion of a cantilevered pipe conveying
fluid with an end-mass [13], with an added spring [14], or with both an
end-mass and an added spring [15] have been studied. If an additional
mass is attached to the end of the pipe, the resulting dynamics becomes
much richer than that of pipes without any external attachments. It
was found that for very large end-mass, a large number of Galerkin’s
truncated modes are required to obtain convergent results [16]. The
results reported in [14] showed that a cantilevered pipe with an external
spring along its length would exhibit 2D or 3D periodic, quasiperiodic
and chaotic oscillations beyond the onset of flutter. Compared to the
previous study by Païdoussis et al. [14], a more complete, accurate and
interesting work was done by Ghayesh et al. [17], who investigated
the role of spring configuration and its location along the pipe length.
Chang et al. [18] extended Wadham-Gagnon et al.’s equations [12]
by introducing a base excitation, and applied them to investigate the
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possibility of controlling the pipe’s 3D motion and/or limiting it to a
2D motion in a pre-defined direction, by changing the frequencies and
amplitudes of base excitation.

Due to recent technological developments in micro-engineering, the
characteristic size of pipes becomes smaller and smaller. Miniaturized
beams/pipes have become one of the core components of micro-
electronic–mechanical-systems (MEMS) [19–21] and magneto-electro-
elastic-systems (MEES) [22]. In 2010, the dynamics of microscale pipes
containing internal fluid flow have been studied by Rinaldi et al. [23]
in the context of the classical continuum mechanics theory, where the
inside diameter of the circular micropipe ranges from 1 to 100 μm.
Recently, size-dependent behaviors of microscale structures have been
observed experimentally {see, e.g., Fleck et al. [24], Lam et al. [25],
McFarland and Colton [26]}. In many cases, therefore, we cannot di-
rectly extend the analysis of macroscale structures to that of microscale
structures. For that reason, several non-classical elasticity theories, such
as the modified strain gradient theory (MSGT) and modified couple
stress theory (MCST) [27], have been introduced to study the behavior
of microscale structures by incorporating size dependence. For bending
and torsion behaviors of microscale structures, as discussed by Xu
et al. [28], the MCST is more adequate for describing the size-dependent
effect.

For fluid-conveying micropipes with both ends supported, a the-
oretical model was developed by Wang [29] for the linear vibration
analysis, in which the Euler–Bernoulli beam assumption and the MCST
were employed. In another work by Xia and Wang [30], the size-
dependent vibration of micropipes was analyzed using Timoshenko
beam models. Yang et al. [31] investigated the microfluid-induced
nonlinear free vibration of micropipes with both ends immovable by
using the MCST. The geometric nonlinearity arising from the mid-
plane stretching was taken into account and the static post-buckling
problem was also discussed. Mashroutech et al. [32] utilized the same
nonlinear equation of motion and revisited the nonlinear frequencies
based on a three-mode approximation of Galerkin’s approach and the
variational iteration method. Tang et al. [33] have developed a nonlin-
ear theoretical model for size-dependent 3D vibration analysis of curved
micropipes conveying fluid with clamped–clamped ends based on the
MCST. The Lagrangian nonlinear axial strain was adopted to obtain the
static deformation induced by the internal fluid flow. Wang et al. [34]
investigated the dynamics of microscale pipes conveying fluid with
consideration of size effects of both micro-flow and micro-structure,
for either straight or curved pipes with cross-section of internal fluid
devised as circular, elliptic or rectangular shapes. In the work by
Farokhi et al. [35], molecular dynamics simulations were performed for
the analysis of carbon nanotube-based resonators. The validity of the
classical continuum mechanics theory and the developed size-dependent
continuum model at the nanoscale was checked.

Perhaps the first study of the dynamics of cantilevered micropipes
conveying fluid is contributed by Hosseini and Bahaadini [36], who
derived the linear equation of motion based on the MSGT and then
performed an analysis of eigenvalues with a parametric study to examine
the effect of length scale parameter. In another paper of Bahaadini and
Hosseini [37], the effect of fluid slip condition on the free vibration and
flutter instability of viscoelastic cantilevered carbon nanotubes (CNTs)
conveying fluid were investigated. The material property of the CNT
was simulated by the Kelvin–Voigt viscoelastic constitutive relation. The
equations derived by Hosseini and Bahaadini are linear. Hu et al. [38]
developed a nonlinear 2D model for cantilevered micropipes conveying
fluid and explore the possible size-dependent nonlinear responses based
on the MCST. To the author’s knowledge, however, the literature on
nonlinear modeling and nonlinear equations of motions for cantilevered
micropipes with consideration of small length scale effect is very limited
and hence the 3D nonlinear dynamics of this system have not been
reported. This motivates the current work.

The objective of this study is to develop a microstructure-dependent
3D nonlinear model and apply it to investigate the 2D and 3D periodic

motions of fluid-conveying cantilevered micropipes. Attention is focused
on the effect of small length scale on the two types of periodic motions.
The paper is organized as follows. In Section 2, based on the geometrical
analysis of 3D motions of the cantilevered micropipe conveying fluid
and the MCST, the 3D version of governing equations are derived, in
which the material length scale parameter is incorporated. Utilizing the
center manifold theory, normal form method and O(2) symmetry, the
original governing equations are rigorously reduced to a two-degree-
of-freedom (2DOF) vibration system in Section 3. Section 4 deals with
two possible types of periodic motions and their stabilities by means
of the averaging methods and numerical simulations. Some conclusions
are drawn out in Section 5.

2. Derivation of the equations of motions

The system under consideration consists of a uniform micropipe of
length 𝐿 with circular cross-section, external cross-sectional area 𝐴p,
mass 𝑚 per unit length, mass 𝜌 per unit volume, conveying incompress-
ible fluid of mass 𝑀 per unit length, flowing axially with velocity 𝑉
not varying with time; see Fig. 1. Here we introduce both Lagrangian
coordinate system (𝑋, 𝑌 ,𝑍) and Eulerian coordinate system (𝑥, 𝑦, 𝑧) in
the same way as that proposed by Wadham-Gagnon et al. [12].

As we know, the 3D version of nonlinear equations of motion
for a macro cantilevered pipe conveying fluid has been derived by
Wadham-Gagnon et al. [12], who defined the strain energy by an
expression related to the curvature of the pipe. For micropipes, in the
presence of size-dependent behavior, the expression of strain energy for
macropipes cannot be directly applied. According to the modified couple
stress formulation [27], the displacements 𝑢1(𝑋, 𝑌 ,𝑍, 𝑡), 𝑢2(𝑋, 𝑌 ,𝑍, 𝑡)
and 𝑢3(𝑋, 𝑌 ,𝑍, 𝑡) of any material point of the pipe at moment 𝑡 in the
𝑥, 𝑦 and 𝑧 directions, respectively, are required to derive the formula of
strain energy. It should be mentioned that𝑋, 𝑌 and𝑍 are the Lagrangian
coordinates introduced to label particles of the pipe at the original
equilibrium state, and they are related to the Eulerian coordinates 𝑥, 𝑦
and 𝑧 as

𝑢1(𝑋, 𝑌 ,𝑍, 𝑡) = 𝑥 −𝑋, 𝑢2(𝑋, 𝑌 ,𝑍, 𝑡) = 𝑦 − 𝑌 , 𝑢3(𝑋, 𝑌 ,𝑍, 𝑡) = 𝑧 −𝑍. (1)

According to the MCST, the strain energy 𝑈 in a deformed isotropic
linear elastic material occupying region 𝛺 can be written as [27]

𝑈 = 1
2 ∫𝛺

(𝛔 ∶ 𝛆 +𝐦 ∶ 𝛘)d𝑣. (2)

Unless otherwise specified, we denote d𝑣 = d𝑋d𝑌 d𝑍. In Eq. (2), the
stress tensor 𝛔, the strain tensor 𝛆, the deviatoric part of the couple stress
tensor 𝐦, and the symmetric curvature tensor 𝛘, are given by

𝛔 = 𝜆tr(𝛆)𝛅 + 2𝐺𝛆 (3)
𝛆 = (1∕2)[∇𝐮 + (∇𝐮)T] + (1∕2)∇𝐮 ⋅ (∇𝐮)T (4)
𝐦 = 2𝑙2𝐺𝛘 (5)
𝛘 = (1∕2)[∇𝛉 + (∇𝛉)T] (6)

respectively. In Eqs. (3)–(6), 𝜆 and 𝐺 are the Lamé’s constants, 𝛅 is
the Kronecker’s tensor, Eq. (4) is the Lagrangian strain tensor repre-
senting the large-deflection-induced nonlinearities, ∇ is the Lagrangian
gradient operator. 𝑙 is a material length scale parameter [27]. Gen-
erally, different materials have different values of 𝑙, and 𝑙 = 0 is
for macropipes [29]. In Eq. (4), 𝐮 is the displacement vector with
components 𝑢1(𝑋, 𝑌 ,𝑍, 𝑡), 𝑢2(𝑋, 𝑌 ,𝑍, 𝑡), and 𝑢3(𝑋, 𝑌 ,𝑍, 𝑡). In Eq. (6), 𝛉
is the rotation vector and is given by

𝛉 = (1∕2)curl(𝐮). (7)

In the following, a curvilinear coordinate 𝑠, along the length of the
deformed pipe is introduced. In fact, 𝑠 is equal to 𝑋 [12]. According
to the Euler–Bernoulli beam assumption, a circular cross-section lying
in the 𝐣′𝐤′ plane [see Fig. 2(d)] is considered as a rigid one, i.e., there is
no deformation during oscillations, which means that the displacement
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