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a b s t r a c t

The points of a plasma flow where the velocity matches the wave velocity of either the slow or fast
magnetohydrodynamics modes are known to be highly relevant e.g. in the study of stellar winds. We develop a
geometric optics analysis of a simple flow geometry where slow or fast critical points are present. A first integral
of the ray equations is useful for a qualitative study of the ray topology and the transport of wavefronts, which
are illustrated with numerical examples. The evolution of perturbations traveling along rays and eventually
becoming shocks is also analyzed, showing that whenever wavefronts are slowed either by a small wave velocity
or the geometry of the ray, shocks are more likely to occur.

1. Introduction

Assume an ideal plasma in motion and start a magnetosonic wave at
some point of it. If it moves along with the plasma flow, it is accelerated
by it; if it goes upstream, it will move backwards or forward depending
on the different velocities of the wave and the fluid; if originally the
wavefront is oblique to the flow direction, a range of possible evolutions
lies ahead. The problem seems technically interesting, but the fact that
there exists a precise physical setting where this situation occurs makes
it doubly relevant. This concerns the solar (and stellar) winds. The
groundbreaking model of Parker [1,2] showed how the particles of the
solar wind may reach supersonic velocities; later this was generalized
to include the magnetic field by Weber and Davis [3], to non-radial
flows [4], to relativistic settings [5], and much else. Today the subject
may be considered classical [6,7], but much remains to be learned.
In particular magnetosonic shocks are not covered by the original
theory, which focuses on the properties and location of slow, Alfvén
and fast critical points, i.e. those where the MHD wave velocity matches
the one of the flow. The latter evolution of the waves, and eventual
creation of shocks, is obviously important. In particular the bow shock
of the Earth and other astrophysical objects is a fast magnetosonic
one [8,9]; slow shocks are found in Earth’s magnetosphere [10] and
coronal plumes [11], fast ones in the heliosheath [12] and in solar
flares [13]. These last papers are largely observational or use ad hoc
numerical simulations, appropriate for the complexity of the physical
setting, where an entirely analytical development is impossible. We
intend to study how magnetosonic waves evolve in the vicinity of MHD
critical points starting from first principles, so that a simple geometry is
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needed for the mathematics to be tractable. The MHD ideal equations
are still nonlinear, but the nonlinear terms involve at most the product of
two of the main variables (velocity, magnetic field and density) or their
derivatives. This is the ideal scenario for the use of nonlinear geometric
optics when studying high-frequency perturbations: [14] is a good
exposition. One-phase expansions such as ours are studied in [15,16].
The subject has grown to become highly elaborate, but the review
paper [17] remains an excellent account of the motivation and problems
in geometric optics. The techniques of weakly nonlinear geometric
optics have been used with other names such as theory of weak waves
or rays in hyperbolic differential equations, with all their attendant
applications to Fluid Dynamics and Magnetohydrodynamics: [18,19]
are among the best monographs dealing with the subject. This paper
is essentially divided into two parts: the first one deals with the shape
of evolution of rays and wavefronts of fast and slow waves; and the
second one considers the formation of shocks by a fast magnetosonic
perturbation transported along rays. We omit Alfvén waves because
they are much simpler for our geometry and because they do not give
rise to shocks. This last question depends on the value of a certain
integral whose integrand is a rather complex function of the equilibrium
parameters, which must be estimated to indicate which rays are more
likely to yield a shock. Where analytic solutions are impossible to find,
we have taken typical values of the parameters and perform numerical
integration to illustrate the general behavior and reach qualitative
conclusions.
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2. Equilibrium, rays and wavefronts

The correct geometry to deal with the solar wind would be a cylindri-
cal or spherical one. however, since we wish to study the neighborhoods
of the critical fast and slow points, we may take there the radius as
roughly constant and use instead cartesian coordinates. We also assume
that the flow follows the radii, as it happens with slowly rotating stars;
and finally, we restrict our study to the equatorial plane, as in [3], i.e. to
a two dimensional configuration. In fact, the magnetic field often has a
vertical component, and the equilibrium equation is a Grad–Shafranov
one; see e.g. [20]. Axisymmetry means now dependence only on one
variable, which we set as 𝑥. The equilibrium equations in this situation
are as follows. Denoting 𝐯 = (𝑣, 0) the fluid velocity, 𝐁 = (𝐵1, 𝐵2)
the magnetic field, 𝜌 the density, 𝑃 the pressure, 𝐅 = (𝐹 , 0) a forcing
(e.g. gravitational), ′ = 𝑑∕𝑑𝑥, the ideal MHD equations become

𝜌𝑣𝑣′ = −𝑃 ′ − 𝐵2𝐵
′
2 + 𝐹 ,

𝐵1𝐵
′
2 = 0 (momentum equation), (1)

(𝑣𝐵2)′ = 0 (induction equation), (2)
𝐵′
1 = 0 (divergence equation of the magnetic f ield), (3)

(𝜌𝑣)′ = 0 (continuity equation). (4)

Assuming 𝐵1 ≠ 0, (1) yields 𝐵2 = const., (2) implies 𝐵2 = 0, so that
𝐵1 = 𝐵 (const.) by (4). Hence we are left with

𝜌𝑣𝑣′ = −𝑃 ′ + 𝐹 , (5)
𝜌𝑣 = 𝐶 (const.) (6)

We will take units so that 𝐶 = 1, and assume a polytropic plasma
𝑃 = 𝐴𝜌𝛾 . Traditionally one takes the monatomic constant 𝛾 = 5∕3, and
Parker took 𝛾 = 1 (isothermality). However, none of these values is
entirely admissible as they yield 𝑣(∞) = ∞ (for 𝛾 = 1) or 𝑣(∞) = 0 (for
𝛾 = 5∕3). It is found that 𝛾 ∼ 1.1−1.4 [7]. We have taken 𝛾 = 1.1 for our
modelization of the rays, and 𝛾 = 1 in the simplified form of the slow
rays (since anyway we do not pretend to go far away from the slow
critical point).

We know that high-frequency perturbations of this equilibrium are
adequately described by the geometric optics model. We assume the
basic facts known and start from the formula for the fast and slow
magnetosonic velocities, 𝑐±:

(𝑐± − 𝐯 ⋅ 𝐧)2 = 1
2

(

𝜕𝑃
𝜕𝜌

+ 𝐵2

𝜌

)

± 1
2

[

(

𝜕𝑃
𝜕𝜌

+ 𝐵2

𝜌

)2
− 41

𝜌
𝜕𝑃
𝜕𝜌

(𝐁 ⋅ 𝐧)2
]1∕2

,

(7)

where 𝐧 represents the wave vector (normal to the wavefront), which is
an eigenvector of the eikonal equation and 𝑐± its eigenvalue. In terms
of the sound speed 𝑐2𝑠 = 𝜕𝑃∕𝜕𝜌 and the Alfvén velocity 𝑐2𝐴 = 𝐵2∕𝜌,
and writing for a two dimensional geometry 𝐧 = (cos𝜓, sin𝜓), since
𝐯 = (𝑣, 0),

(𝑐± − 𝑣 cos𝜓)2 = 1
2
(𝑐2𝑠 + 𝑐

2
𝐴) ±

1
2
[(𝑐2𝑠 + 𝑐

2
𝐴)

2 − 4𝑐2𝑠 𝑐
2
𝐴cos

2𝜓]1∕2. (8)

Calling

𝜇 =
𝐴𝛾
𝐵2

=
𝑐2𝑠
𝑐2𝐴
𝜌−𝛾 =

𝑐2𝑠
𝑐2𝐴
𝑣𝛾 , (9)

(notice that if 𝛾 = 1, then 𝜇 = 𝑐2𝑠 ∕𝐵
2), we have

𝑐± = 𝑣 cos𝜓 + 𝐵𝑣1∕2
( 1
2
(1 + 𝜇𝑣−𝛾 )

± 1
2
[

(1 + 𝜇𝑣−𝛾 )2 − 4𝜇𝑣−𝛾cos2𝜓
]1∕2)1∕2

. (10)

From now on we will denote either the fast or the slow speed by 𝑐, and
by 𝑈 the ‘intrinsic’ magnetosonic speed, i.e. the term to the right of
𝑣 cos𝜓 in (10), not linked to the fluid velocity except for the density;
the context will make clear which one are we referring to. Notice that

always 𝑈 > 0. Rays are bicharacteristic curves (𝐱(𝑡),𝐧(𝑡)) of the eikonal
equation. They satisfy [19] the equations
𝑑𝐱
𝑑𝑡

= 𝑐𝐧 + 𝜕𝑐
𝜕𝐧

− 𝐧
(

𝐧 ⋅
𝜕𝑐
𝜕𝐧

)

𝑑𝐧
𝑑𝑡

= 𝐧
(

𝐧 ⋅
𝜕𝑐
𝜕𝐱

)

− 𝜕𝑐
𝜕𝐱
. (11)

Once found the phase 𝜙 through the eikonal equation, wavefronts are
surfaces (or lines) 𝜙 = const. Since along the rays 𝑑𝜙∕𝑑𝑡 = 0, wavefronts
are transported by rays. In our case system (11) simplifies to
𝑑𝑥
𝑑𝑡

= 𝑐 cos𝜓 − 𝜕𝑐
𝜕𝜓

sin𝜓 (12)

𝑑𝑦
𝑑𝑡

= 𝑐 sin𝜓 + 𝜕𝑐
𝜕𝜓

cos𝜓 (13)

𝑑𝜓
𝑑𝑡

= 𝜕𝑐
𝜕𝑥

sin𝜓. (14)

Notice that since the only variables involved are (𝑥, 𝜓), Eq. (13) uncou-
ples from the rest and may be ignored, except to find 𝑦(𝑡). We have

𝑑
𝑑𝑡

(

𝑐
sin𝜓

)

= 0, (15)

so that 𝑐∕ sin𝜓 is a first integral of the system. Thus the projection of a
ray 𝑡→ (𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)) into the (𝑥, 𝜓) plane lies in one of the curves

𝑐
sin𝜓

= 𝑘 (const.) (16)

Since 𝑐 is even with respect to 𝜓 and sin𝜓 is odd, these curves are
symmetric with respect to 𝜓 = 𝜋; the reflection with respect to 𝜓 = 𝜋 of
the curve associated to the constant 𝑘 is the one associated to −𝑘. Thus
it is enough to study the geometry of the level curves of the function
𝑐∕ sin𝜓 when 𝜓 ∈ [0, 𝜋], 𝑣 ≥ 0. The lines 𝜓 = 0, 𝜋, 2𝜋 are singular of the
first integral, but this is an artifact; they themselves are perfectly good
rays, since 𝜓 is constant if sin𝜓(0) = 0. These curves have a branching
point at 𝑐 = 0, sin𝜓 = 0. Since 𝑐 = 𝑣 cos𝜓 + 𝑈 , this needs cos𝜓 < 0,
i.e. 𝜓 = 𝜋. Let us find explicitly the value of 𝑣 in the branching point by
taking in (10) 𝜓 = 𝜋.

For the slow wave,

𝑣− = 𝐵𝑣1∕2− inf{1, 𝜇𝑣−𝛾− }, (17)

and for the fast one,

𝑣+ = 𝐵𝑣1∕2+ sup{1, 𝜇𝑣−𝛾+ }. (18)

Therefore the next alternatives may occur:
If 𝜇𝑣−𝛾− ≤ 1, which implies 𝜇𝑣−𝛾+ ≤ 1, 𝑣+ = 𝐵2, 𝑣− = (𝜇𝐵2)1∕(1+𝛾). This

occurs if 𝜇 ≤ 𝐵2𝛾 .
If 𝜇𝑣−𝛾+ ≥ 1, which implies 𝜇𝑣−𝛾− ≥ 1, 𝑣− = 𝐵2, 𝑣+ = (𝜇𝐵2)1∕(1+𝛾). This

occurs if 𝜇 ≥ 𝐵2𝛾 .
The remaining alternative 𝜇𝑣−𝛾+ < 1 < 𝜇𝑣−𝛾− would imply 𝑣+ =

𝑣− = 𝐵2, so it is contradictory. For low beta plasmas, the most likely
alternative is the first one, since 𝜇𝑣−𝛾− ≤ 1 is equivalent to 𝑐𝑠𝑣𝛾 ≤ 𝑐1+𝛾𝐴
at the point 𝑣 = 𝑣−. We now proceed to analyze in detail slow and fast
rays and wavefronts.

2.1. Slow magnetosonic rays

For low beta plasmas 𝑐𝑠 ≪ 𝑐𝐴 we may ignore the terms 𝑐𝑠∕𝑐𝐴 in (8),
and we are left with

𝑐 ∼ 𝑣 cos𝜓 + 𝐵
√

𝜇𝑣(1−𝛾)∕2|cos𝜓| = 𝑣 cos𝜓 + 𝑐𝑠|cos𝜓|. (19)

Notice that in the isothermal case 𝑐𝑠 is constant. As explained, this
cannot hold all over the range of 𝑥, but it is a very good approximation
for points not too far from the critical one. This approximation cannot
hold either when 𝑣 → 0, because there the term 𝑣−𝛾 → ∞, but anyway
𝑣 = 0 is unphysical e.g. in the solar wind. To illustrate how 𝑐 and its
approximation compare, we have plotted some level curves of both for
𝐵 = 2, 𝜇 = 0.5, and 𝛾 = 1.1 for the exact velocity.
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