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a b s t r a c t

This paper presents an investigation on the nonlinear aeroelastic system of an airfoil with external store by
incremental harmonic balance (IHB) method. Besides solving limit cycle (LC) solutions, the IHB method is
implemented to obtain quasi-periodic (QP) solutions by introducing multiple irreducible time scales. Steady
state responses such as LC and QP oscillations obtained by the presented method are verified by numerical
examples. One pair of Floquet multipliers for LC solutions first leave and then enter a unit cycle at complex
conjugate values, indicating the existence of a secondary Hopf bifurcation and its reversal one. Along with the
fundamental frequency of LC oscillation, an additional frequency arises at the secondary bifurcation, and finally
disappears at the reversal bifurcation. The appearance and disappearance of the irreducible frequency cause the
steady state responses changing from LC to QP and back to LC oscillation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, a huge amount of research has been reported
on the nonlinear aeroelastic responses of airfoil [1–4]. One of the
major categories of aeroelastic analysis is based on a typical model of
rigid airfoil section [5–7], oscillating in pitch and plunge directions.
Both theoretical analysis and wing tunnel tests show that, limit cycle
oscillations (LCOs) can arise as the flow velocity increases beyond (or
decrease below) a critical flutter speed, when there are nonlinearities
such as cubic stiffness, piecewise freeplay and hysteresis [8–10].

A lot of contributions have been made to obtain and analyze LCOs of
nonlinear aeroelastic systems. Numerical methods such as time march-
ing algorithms include finite difference, Runge–Kutta (RK) and reduced
order cyclic methods [11], etc. Analytical or semi-analytical approaches
have stimulated the research interests of many researchers, possibly due
to the limitation of numerical approaches. For example, the harmonic
balance [12], homotopy analysis [13] and IHB methods [14,15] have
been successfully implemented to obtain LC solutions.

Aside from LCOs, it has been reported that nonlinear aeroelastic
systems of airfoil can also exhibit complex dynamic behaviors such as
quasi-periodic (QP) [16] and chaotic responses [17]. Li et al. revealed
that, time delay between the control input and actuator may cause high-
frequency motions and QP vibrations [18]. Luongo and Zulli [19] found
that QP responses can take place in NES-controlled system of an airfoil.
By using the normal form theories and numerical approaches, Zhang
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and Chen [20] successfully predicted the existence of QP responses in
the nonlinear aeroelastic system of an airfoil with an external store.

Currently, the analysis of QP response is usually carried out based
on numerical integration methods [21]. There is a lack of analytical
technique, which can be generally employed to solve and analyze QP
responses. In fact, it has been a tough job for years to seek quasi-
periodic solutions analytically [22,23]. In our experience, unexpected
obstacles would be confronted inevitably even in the construction of
semi-analytical solutions.

Semi-analytical approaches for QP solution quantification are usu-
ally based more or less on harmonic balancing technique. Guskov
et al. [24] presented an HB-type method to study QP motions. Peletan
et al. [25] constructed an approach named as QP-HB method for rotor–
stator dynamic systems. Well-known, the incremental HB (IHB) method
provides us with a convenient way to generate continuation of periodic
solutions. Such method is also found to be applicable in solving QP
solutions of nonlinear Jeffcott rotor system [26]. More recently, the
IHB was modified by Huang et al. [27] by considering two time scales
to study the quasi-periodic motions of an axially moving beam with
internal resonance.

As for QP response analysis of aeroelastic systems, to the best of
our knowledge there is much less published literature focusing on semi-
analytical solution techniques. A mixed multiple scale/HB method was
developed by Luongo and Zulli [19], to obtain the QP solutions of
NES-controlled aeroelastic system. Mundis and Mavriplis [28] suggested
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Nomenclature

𝛼 pitch angle of the airfoil about the mid-point, rad
𝛽 pitch angle of the control surface about the hinge, rad
ℎ plunge displacement of the airfoil, m
ℎ1 non-dimensional plunge displacement, ℎ1 = ℎ∕𝑏
𝑡, 𝑡1 non-dimensional time, real time (second), 𝑡 = 𝑉 𝑡1∕𝑏
𝐸 the elastic axis of wing
𝐹 aerodynamic center
𝐺 mass center
𝑏 semi-chord length of the airfoil, m
𝑎𝑏 distance from the elastic axis to the mid-chord with 𝑎

as a coefficient
𝑥𝛼𝑏 distance from the airfoil mass center to the elastic axis
𝑥𝛽𝑏 distance from the mass center of the control surface to

the mid-chord
𝐿𝑏 distance from aerodynamic center to the mid-chord
𝑐𝑏 distance from the hinge of the control surface to the

mid-chord
𝑚 mass per unit length of airfoil
𝑚𝛽 , 𝑚ℎ modal mass per unit span for each degree of freedom
𝑚𝑡 total mass of the modal per unit span
𝜔𝛼 , 𝜔𝛽,𝜔ℎ uncoupled natural frequency
𝑟𝛼 radius of the gyration about the wing-aileron
𝑟𝛽 reduced radius of gyration of aileron
𝐾𝛼 , 𝐾𝛽 , 𝐾ℎ the coefficients of linear stiffnesses of each degree-

of-freedom
𝜍𝛼 , 𝜍𝛽 , 𝜍ℎ the damping ratios of each degree of freedom
𝑐𝛼 , 𝑐𝛽 , 𝑐ℎ the coefficients of damping
𝑘𝛼3, 𝑘𝛽3, 𝑘ℎ3 the nonlinear stiffnesses of each degree of freedom
𝐿 aerodynamic lift
𝑀𝐿 aerodynamic lift moment
𝑀𝛼 aerodynamic moment of wing-aileron
𝑀𝛽 aerodynamic moment of aileron
𝑆𝛼 the static unbalance moment of inertia about the

elastic axis 𝐸
𝑆𝛽 the static unbalance inertia moment of the external

store about the aerodynamic center 𝐹
𝐼𝛼 mass moments of inertia of the airfoil
𝐼𝛽 mass moments of inertia of the store
𝑉 flow speed, m∕s
𝑄 non-dimensional flow velocity
𝑄𝑓 critical flow speed
𝜌 air density kg∕m3

𝜇 mass ratios of airfoil/air
𝜇𝛽 mass ratios of store/air

a hybrid approach, namely time spectral method, for solving quasi-
periodic solution of aeroelastic system.

More and more QP responses have been found to take place in
aeroelastic system [16–20], as mentioned above however, it is rare
to find quantificative analysis via semi-analytical techniques. Differ-
ent from the fact that there is a single fundamental frequency for
LCOs [11–15], multiple irreducible frequencies are usually detected
in QP responses. Both the fundamental and the additional irreducible
frequencies have to be determined in the solution process for nonlinear
aeroelastic systems, as these systems are self-excited without priorly
given external excitations [19]. This feature makes it even tougher to
search QP solutions of aeroelastic systems, when comparing to some
other systems such as rotor–stator and Jeffcott rotor as they contain
pre-established frequencies [25,26].

It is mentioned above, Zhang and Chen [20] revealed that there exist
QP responses in the nonlinear aeroelastic system of an airfoil with an
external store. The authors employed the normal form theory to examine

Fig. 1. Sketch of an airfoil with an external store [29].

the bifurcation of equilibrium qualitatively [20]. QP responses predicted
by this method are verified by numerical solutions. Despite there are
indeed several cases being reported for the existence of QP responses
in aeroelastic systems, much fewer contribution has been made to
understand the evolution of QP responses. The vibration evolution was
investigated by Virgin et al. between LC, QP and chaotic responses for
airfoil aeroelastic system with a freeplay [16].

In this paper, we will investigate the nonlinear aeroelastic system of
an airfoil with an external store [20,29]. Different from the numerical
computation of LCOs [29] and the qualitative investigation on equi-
librium bifurcations [20], the presented study puts the major interest
on accurate quantification of QP responses. The QP responses will be
obtained semi-analytically by employing the IHB method with multiple
time scales. Note also that, the existing studies consider either the
plunge [20] or pitch nonlinear stiffness [29]; herein, we adopt store-
associated nonlinearities such as a cubic stiffness in our considered
system.

Furthermore, we are also curious about the evolution of LC to QP
responses, as well as that of QP back to LC. Here we try to understand the
phenomenological rather than mechanistic description of QP responses.
Importantly, it is the semi-analytical feature of the IHB solution that
provides us with a convenient way to analyze its evolution phenomeno-
logically, as it is possible to generate solution continuation by the IHB
method. Therefore, we will pay special attention on the harmonics
associated with different time scales, in order to better understand the
evolution of QP as well as LC oscillations in the considered system.

2. Equations of motion

The physical model shown in Fig. 1 is a two-dimensional airfoil with
an external store. The airfoil section itself oscillates in the directions
of pitch and plunge. The pitch angle about the elastic axis is denoted
by 𝛼, positive with the nose up. The plunge deflection is denoted by
ℎ, positive in the downward direction. The external store is located
at the aerodynamic center 𝐹 with a distance from mid-chord as 𝐿𝑏.
The varying pitch angle of the external store is denoted by 𝛽, positive
with the nose up. The elastic axis is located at a distance 𝑎𝑏 from the
mid-chord, and also at a distance 𝑥𝛼𝑏 from the mass center 𝐺. The
mid-chord length is 𝑏 and the mass center of the external store is 𝑥𝛽𝑏,
both measured from the aerodynamic center with positive values when
measured toward the trailing edge of the airfoil.

Considering there is aerodynamic acting on the airfoil, while neglect-
ing that acting on the external store, the coupled equations for the airfoil
motion can be written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑚 + 𝑚𝛽
)

ℎ̈ +
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𝑆𝛼 + 𝑆𝛽 − 𝑚𝛽𝐿
)

𝛼̈ + 𝑆𝛽𝛽 +𝐾ℎℎ = −𝐿
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𝑆𝛼 + 𝑆𝛽 − 𝑚𝛽𝐿
)

ℎ̈ +
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𝐼𝛼 + 𝐼𝛽 + 𝑚𝛽𝐿
2 − 2𝑆𝛽𝐿

)

𝛼̈ +
(

𝐼𝛽 − 𝑆𝛽𝐿
)

𝛽
+𝐾𝛼𝛼 = 𝑀𝐿

𝑆𝛼 ℎ̈ +
(

𝐼𝛽 − 𝑆𝛽𝐿
)

𝛼̈ + 𝐼𝛽𝛽 +𝐾𝛽𝛽 = 0

(1)

where 𝐿 is the lifting force and 𝑀𝐿 is the lifting moment; 𝑆𝛼 = 𝑚𝑥𝛼𝑏 is
the mass static moment of the airfoil with respect to the elastic axis
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