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a b s t r a c t

We investigated interfacial instability of a thin liquid film flowing down an inclined plane, considering the linear
variation of fluid properties such as density, dynamical viscosity, surface tension and thermal diffusivity, for the
small variation of temperature. Using long wave expansion method and considering order analysis specially for
very small Biot number (𝐵𝑖) we obtained a single surface equation in terms of the free surface ℎ(𝑥, 𝑡). Considering
sinusoidal perturbation method we carried out linear stability analysis and obtained the critical Reynolds number
(𝑅𝑒𝑐 ) and linear phase speed (𝑐𝑟), both of which depend on 𝐾𝜇 , 𝐾𝜌 but independent of 𝐾𝜎 , 𝐾𝜅 . Using the method
of multiple scales, weakly nonlinear stability analysis is carried out. We demarcated subcritical, supercritical,
unconditional and explosive zones and their variations for the variation of 𝐾𝜇 , 𝐾𝜌 and 𝐾𝜎 . Also we discussed the
variations of threshold amplitude in the subcritical as well as in the supercritical zones for the variation of 𝐾𝜇 , 𝐾𝜌
and 𝐾𝜎 . Finally we discussed the variation of nonlinear wave speed 𝑁𝑐𝑟 for the variation of 𝐾𝜇 , 𝐾𝜌 and 𝐾𝜎 .

1. Introduction

Searching the study of instability mechanism on the thin film
we found that most of the authors studied the effect of isother-
mal/nonisothermal cases and very few of them considered the varia-
tion of different physical properties due to variation of temperature.
Although certain physical properties such as viscosity, density, thermal
conductivity and surface tension highly depend on the variation of
temperature, so these physical quantities could not be considered as
constant in real situation. Goussis and Kelly [1] studied the effects of
variable viscosity on the surface wave mode of instability of a liquid
film flowing down heated or cooled inclined surface by means of long
wavelength analysis. They found that cooling stabilizes the flow, while
heating destabilizes it. For the case of cooling they derived a cutoff
Prandtl number above which the flow is always stable. The effects of
variable viscosity on the surface wave mode of instability of a liquid
film flowing down heated or cooled inclined surfaces, studied again
by Goussis and Kelly [2], using two models of viscosity variation with
temperature. Both the models confirmed that heating destabilizes the
flow, while cooling stabilizes it. They also found that the critical wave
number is always zero in case of heating, while for the case of cooling
critical wave number can be non zero. Reisfeld and Bankoff [3] studied
the stability of a heated volatile liquid film subjected to surface tension
and Vander Waals forces, assuming the linear variation of viscosity with
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temperature. They found that effect of variable viscosity reduce the
rupture time of the film relative to the constant viscosity. Pascal et al. [4]
first studied the long-wave instability of flow down an inclined plane
considering the linear variation of different thermophysical properties
such as density, conductivity, surface tension, viscosity and specific
heat. Linear stability analysis is carried out by long wave perturbation
method. They found the critical Reynolds number considering the cases
when Biot number 𝐵𝑖 = 0 or 𝐵𝑖 ⟶ ∞ or as 𝛬 = 𝜆 = 0, where
𝛬 and 𝜆 are the scaled gradients with respect to temperature of the
thermal conductivity and viscosity respectively. For the general case
they obtained an analytical expression of the critical Reynold’s number
by implementing asymptotic expansions as 𝐵𝑖 = 0 or as 𝛬 = 𝜆 = 0. Re-
cently D’Alessio et al. [5] studied the effects of variable fluid properties
on thin film instability, where the fluid properties are allowed to vary
linearly with temperature except the specific heat 𝐶𝑝 which is taken
as constant. Linear stability analysis is carried out using the long wave
perturbation method. They showed how the critical Reynolds number
and perturbation phase speed depend on the various dimensionless
parameters and thermophysical properties. The approach developed by
Pascal et al. [4] and S.J.D. D’Alessio et al. [5] although are pioneering
work, restrict themselves to discuss only linear stability analysis, due
to lengthy process of algebraic computation. But our proposed analysis
helps to construct a single surface equation in terms of free surface
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𝑧 = ℎ(𝑥, 𝑡), which helps us to discuss the linear as well as weakly non-
linear stability analysis. For simplicity we have restricted ourselves only
for small Biot number. Our proposed analysis is purely analytical and
not very lengthy, so that we may easily avoid the computation of the
problem arises due to variations of several thermophysical properties.

Biot number 𝐵𝑖 is the ratio of the heat transfer resistance inside
the thin film and the free surface in the contact of ambient air. When
a constant thermal gradient is applied to the inclined plane which is
greater than the temperature of ambient air, the very small Biot number
physically interprets that the heat conduction inside the liquid film is
much faster than the heat convection away from its free surface.

In this article, we studied, the instabilities of the gravity driven flow
of thin liquid film by long wave expansion method and carried out
linear as well as weakly nonlinear stability analysis considering variable
thermophysical properties such as density, dynamical viscosity, surface
tension and thermal diffusivity for very small Biot number.

2. Formulation of the problem

Let us consider a two dimensional flow of viscous film flowing along
an inclined plane of inclination 𝛾(0 ≤ 𝛾 ≤ 𝜋

2 ) with the horizon. The
origin is fixed on the inclined plane, the 𝑥-axis is chosen along the
inclined plane in the downhill direction and the 𝑧-axis pointing in the
upward normal direction. We have neglected the effect of latent heat
due to evaporation by assuming the liquid to be nonvolatile. Also, it is
assumed that the plane along which the thin film is flowing is a perfect
heat conductor being heated uniformly from below with temperature
𝑇𝑤, which is higher than the ambient air temperature 𝑇0 above the film.
We have also ignored the dynamic influence of the ambient air. The
temperature difference △𝑇 = 𝑇𝑤−𝑇0 is responsible for heating the thin
film. It is a fact that some fluid properties such as density 𝜌, dynamic
viscosity 𝜇, thermal diffusivity 𝜅 and surface tension 𝜎 are temperature
dependent. Variations of these properties cannot be totally ignored with
the variations of temperature 𝑇 , though consideration of these variations
makes the problem very difficult to handle. However, there are many
situations of practical occurrence in which the basic equations can be
simplified considerably by taking appropriate approximations, specially
when their variations in the temperature is moderate amounts only.

It is assumed that, for moderate temperature variation, the density,
dynamical viscosity, surface tension and thermal diffusivity all varies
linearly with temperature as:

𝜌(𝑇 ) = 𝜌0[1 −𝐾𝜌(
𝑇 − 𝑇0
𝛥𝑇

)] (1)

𝜇(𝑇 ) = 𝜇0[1 −𝐾𝜇(
𝑇 − 𝑇0
𝛥𝑇

)] (2)

𝜎(𝑇 ) = 𝜎0[1 −𝐾𝜎 (
𝑇 − 𝑇0
𝛥𝑇

)] (3)

𝜅(𝑇 ) = 𝜅0[1 −𝐾𝜅 (
𝑇 − 𝑇0
𝛥𝑇

)] (4)

where 𝜌0, 𝜇0, 𝜎0 and 𝜅0 are the values of 𝜌, 𝜇, 𝜎 and 𝜅 at 𝑇0, which is
taken as the reference temperature. Also 𝐾𝜌 = 1

𝜌0
(− 𝜕𝜌

𝜕𝑇 )𝑇=𝑇0𝛥𝑇 , 𝐾𝜇 =
1
𝜇0
(− 𝜕𝜇

𝜕𝑇 )𝑇=𝑇0𝛥𝑇 , 𝐾𝜎 = 1
𝜎0
(− 𝜕𝜎

𝜕𝑇 )𝑇=𝑇0𝛥𝑇 , 𝐾𝜅 = 1
𝜅0
(− 𝜕𝜅

𝜕𝑇 )𝑇=𝑇0𝛥𝑇 are the
parameters measuring the rate of change with respect to temperature.

The values of 𝐾𝜌, 𝐾𝜇 , 𝐾𝜎 are > 0 for most liquids, but 𝐾𝜅 is positive
for fluids such as water and air, where as < 0 for liquids such as
lubrication oil. These type of approximation are suited well for the small
temperature difference 𝛥𝑇 between the inclined plane and the ambient
air.

Let 𝑢, 𝑣 denote the components of the velocity along the 𝑥 and 𝑧
directions respectively, 𝑝 the pressure and 𝑔 denotes the acceleration due
to gravity. The velocity and temperature field of the film are governed

by the conservation equations for mass, momentum and thermal energy
as:

𝑢𝑥 + 𝑣𝑧 = 0 (5)

𝜌0(𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑧) = −𝑝𝑥 + 𝜌𝑔 sin 𝛾 + ∇(𝜇∇𝑢) (6)

𝜌0(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑧) = −𝑝𝑧 − 𝜌𝑔 cos 𝛾 + ∇(𝜇∇𝑣) (7)

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑧 = ∇(𝜅∇𝑇 ) (8)

where ∇ denotes the Laplacian operator. In the above Eqs. (5), (6) and
(7) density 𝜌 is taken as a constant 𝜌0 in all terms except the term
where it is multiplied by 𝑔, which causes the external force, according
to Boussinesq approximation [6].

The pertinent boundary conditions on the plane (𝑧 = 0) are:

𝑢 = 𝑣 = 0 (9)

𝑇 = 𝑇𝑤 (10)

and on the free surface (𝑧 = ℎ(𝑥, 𝑡)), dynamic and kinematic conditions
along with Newton’s law of cooling as the thermal boundary condition
are:

𝜇[(𝑢𝑧 + 𝑣𝑥)(1 − ℎ2𝑥) + 2(𝑣𝑧 − 𝑢𝑥)ℎ𝑥] = (𝜎𝑥 + ℎ𝑥𝜎𝑧).(1 + ℎ2𝑥)
1
2 (11)

𝑝𝑎 − 𝑝 +
2𝜇[𝑢𝑥ℎ2𝑥 − (𝑢𝑧 + 𝑣𝑥)ℎ𝑥 + 𝑣𝑧]

(1 + ℎ2𝑥)
= 𝜎(𝑇 )ℎ𝑥𝑥(1 + ℎ2𝑥)

− 3
2 (12)

𝑣 = ℎ𝑡 + 𝑢ℎ𝑥 (13)

(𝑇𝑧 − ℎ𝑥𝑇𝑥)(1 + ℎ2𝑥)
− 1

2 +
𝜅𝑔
𝜅𝑇

(𝑇 − 𝑇0) = 0 (14)

where, 𝑝𝑎, 𝜅𝑔 and 𝜅𝑇 denote the atmospheric pressure, heat transfer
coefficient from liquid to air and thermal conductivity of the liquid
respectively.

The dimensionless variables marked by asterisk sign in the super-
script are defined as:

𝑥 = 𝑙0𝑥
∗, (ℎ, 𝑧) = ℎ0(ℎ∗, 𝑧∗), 𝑡 =

𝑙0𝑡∗

𝑢0
, 𝑢 =

𝑢0
𝑢∗

, 𝑣 =
𝑢0ℎ0𝑣∗

𝑙0
,

𝑝 = 𝜌𝑢20𝑝
∗, 𝜃 =

𝑇 − 𝑇0
𝛥𝑇

(15)

Using the dimensionless variables (15) in the Eqs. (5)–(14) we arrive
after dropping the asterisk as:

I. Governing equations:

𝑢𝑥 + 𝑣𝑧 = 0 (16)

𝜖𝑅𝑒(𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑧) = −𝜖𝑅𝑒𝑝𝑥 + 3(1 −𝐾𝜌𝜃) −𝐾𝜇(𝜖2𝑢𝑥𝜃𝑥 + 𝑢𝑧𝜃𝑧)

+ (1 −𝐾𝜇𝜃)(𝜖2𝑢𝑥𝑥 + 𝑢𝑧𝑧) (17)

𝜖2𝑅𝑒(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑧) = −𝑅𝑒𝑝𝑧 − 3 cot 𝛾(1 −𝐾𝜌𝜃) − 𝜖𝐾𝜇(𝜖2𝑣𝑥𝜃𝑥 + 𝑣𝑧𝜃𝑧)

+ 𝜖(1 −𝐾𝜇𝜃)(𝜖2𝑣𝑥𝑥 + 𝑣𝑧𝑧) (18)

𝜖𝑅𝑒𝑃 𝑟(𝜃𝑡 + 𝑢𝜃𝑥 + 𝑣𝜃𝑧) = 𝐾𝜅 (𝜖2𝜃2𝑥 + 𝜃2𝑧 ) + (1 +𝐾𝜅𝜃)(𝜖2𝜃𝑥𝑥 + 𝜃𝑧𝑧) (19)

II. Boundary conditions at the inclined plane (𝑧 = 0):

𝑢 = 𝑣 = 0 and 𝜃 = 1 (20)
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