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a b s t r a c t

Variable-mass problems do not as a rule fit into the cardinal formulation of mechanics; therefore, new formalism
has been constructed to treat variable-mass dynamics. We aim to situate a class of position-dependent mass
problems in the level of classically conservative dynamics. The issue is that, by nature, the sum of kinetic and
potential energies of a position-dependent mass point is not preserved. Given that, we demonstrate a theorem
which establishes the mathematical equivalence between position-dependent mass dynamics and classically
conservative dynamics. Meshchersky’s equation is herein assumed to be in scalar form. In applying the theorem,
a counterintuitive situation arises. To our very best knowledge, our contribution is novel in the field of variable-
mass dynamics.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The mass of a system can be considered to be variable when matter
is permitted to cross the system boundary. Although not formal, this is
an easily conceived notion of the variable-mass condition. Unfamiliar
readers find in [1,2] an elucidating opening about the theme. For other
authors who have contributed to the foundations of the variable-mass
dynamics, see [3] and references therein cited.

Turning the attention to history (see [1,4]), we can infer that the
development of such branch of mechanics has been propelled by two
reasons. First, one observes that there are real world problems that
involve variable-mass systems. The rocket problem is an archetypical
example in this sense. For other important problems, see [1–3]. Second,
there is a mathematical difficulty which is inherent to the field. Namely,
given that ‘‘the fundamental equations of classical mechanics were
originally formulated for the case of an invariant mass contained in a
material volume’’ (see [1, p. 145]), providing variable-mass problems
with a suitable formalism then arises as a challenging issue. On this
point, there is a nexus of contributions establishing the founding bases
(see [1–22]).

The scope of our article is the demonstration of a theorem which
translates the dynamics of a position-dependent mass system into the dy-
namics of a classically conservative system. To wit, attention is directed
to points with mass depending only upon the generalized coordinate
for which Meshchersky’s equation is assumed to be in scalar form.
Hence, the aimed contribution links us intimately with the motivation of
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sighting variable-mass problems from the Weltanschauung of classical
mechanics. To our very best knowledge, this is original in the field of
variable-mass dynamics.

The issue in question is that position-dependent mass problems are
per se nonconservative (see [7]). Videlicet, ‘‘by nature, the sum of
kinetic and potential energies of a position-dependent mass particle is
not generally preserved along its motion’’ (see [5, pp. 351–352]). As
proved in [5], it is the total energy multiplied by a given function that
in truth is conserved in position-dependent mass dynamics. Given that,
the novel theorem elicits the classical conservation of such variable-mass
problems.

The article is organized as it follows. In Section 2, we set the stage
for the discussion. In Section 3, the aimed theorem is established. In
Section 4, we apply the theorem directly and inversely, wherewith
examples are addressed.

2. Preliminaries

The equation of motion of a variable-mass point is Meshchersky’s
equation

𝑚𝑞 −𝑄 − (𝑤 − �̇�)�̇� = 0, (1)

where 𝑚 is varying mass, 𝑞 is generalized coordinate, 𝑄 is generalized
force, 𝑤 is absolute velocity of mass ejection (or aggregation), 𝑡 is time,
overdot is derivative in 𝑡. Eq. (1) entails also that 𝑞 is a coordinate linear
in dimension of length.
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Under the assumptions that 𝑚 = 𝑚(𝑞), 𝑄 = −𝑑𝑉 (𝑞)∕𝑑𝑞, where
𝑉 = 𝑉 (𝑞) is potential energy, and that 𝑤 = 𝑘�̇�, where 𝑘 = 𝑐𝑜𝑛𝑠𝑡.
(i.e., linear in �̇�); Eq. (1) yields

𝑚(𝑞)𝑞 +
𝑑𝑉 (𝑞)
𝑑𝑞

− 𝛼�̇�2
𝑑𝑚(𝑞)
𝑑𝑞

= 0, (2)

where 𝛼 = 𝑘 − 1 = 𝑐𝑜𝑛𝑠𝑡.
The analytical formulation [10] gives us the following conservation

law of Eq. (2):

1
2
𝑚(𝑞)−2𝛼 �̇�2 + ∫ 𝑚(𝑞)−2𝛼−1

𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 = 𝐸, (3)

where 𝐸 = 𝑐𝑜𝑛𝑠𝑡. For a more detailed explanation, see [5,7,8,10].

3. Theory

We now initiate the demonstration of our contribution.

Theorem. The dynamics of a position-dependent mass system, which herein
is assumed to be governed by Eqs. (2) and (3), is mathematically equivalent
to the dynamics of the classically conservative system that is governed by the
equations

𝑞 +
𝑑𝛷(𝑞)
𝑑𝑞

= 0, (4)

1
2
�̇�2 +𝛷(𝑞) = 𝐸, (5)

where 𝐸 = 𝑐𝑜𝑛𝑠𝑡. and

𝛷(𝑞) = 1
𝑚(𝑞)−2𝛼 ∫ 𝑚(𝑞)−2𝛼−1

𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 − 𝐸
𝑚(𝑞)−2𝛼

+ 𝐸. (6)

Proof. First, we prove that Eq. (2) can be put in the form of (4).
We organize Eq. (3) into

�̇�2 = 2𝑚(𝑞)2𝛼
[

𝐸 − ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]

. (7)

Inserting Eq. (7) in (2), we find

𝑚(𝑞)𝑞 +
𝑑𝑉 (𝑞)
𝑑𝑞

− 𝛼
{

2𝑚(𝑞)2𝛼
[

𝐸 − ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]}

𝑑𝑚(𝑞)
𝑑𝑞

= 0. (8)

Dividing Eq. (8) by 𝑚(𝑞), we obtain

𝑞 +
{

𝑚(𝑞)−1
𝑑𝑉 (𝑞)
𝑑𝑞

− 2𝛼𝑚(𝑞)2𝛼−1
[

𝐸 − ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]

𝑑𝑚(𝑞)
𝑑𝑞

}

= 0. (9)

In Eq. (9), the term enclosed by the curly braces is a function
depending only upon 𝑞. Let us suppose as an ansatz that such term is
of the form 𝑑𝛷(𝑞)∕𝑑𝑞, which yields

𝑞 +
𝑑𝛷(𝑞)
𝑑𝑞

= 0, (10)

where
𝑑𝛷(𝑞)
𝑑𝑞

= 𝑚(𝑞)−1
𝑑𝑉 (𝑞)
𝑑𝑞

− 2𝛼𝑚(𝑞)2𝛼−1
[

𝐸 − ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]

×
𝑑𝑚(𝑞)
𝑑𝑞

. (11)

Then, having found Eq. (10), it is immediate that

1
2
�̇�2 +𝛷(𝑞) = 𝑐𝑜𝑛𝑠𝑡. (12)

Eq. (12) is a first integral of (10). For the sake of a convenient
symbology, we rewrite the right-hand side of Eq. (12) as

𝐸 = 𝑐𝑜𝑛𝑠𝑡. (13)

To close the proof, we have to obtain Eq. (6) in a consonant manner.
Based on rules for differentiation, we write

𝑑
𝑑𝑞

[𝑚(𝑞)2𝛼] = 2𝛼𝑚(𝑞)2𝛼−1
𝑑𝑚(𝑞)
𝑑𝑞

, (14)

𝑑
𝑑𝑞

[𝑚(𝑞)2𝛼]∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 =

𝑑
𝑑𝑞

[

𝑚(𝑞)2𝛼 ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]

− 𝑚(𝑞)−1
𝑑𝑉 (𝑞)
𝑑𝑞

.
(15)

Making use of Eqs. (14) and (15), we manipulate Eq. (11) into

𝑑
𝑑𝑞

[

𝛷(𝑞) − 1
𝑚(𝑞)−2𝛼 ∫ 𝑚(𝑞)−2𝛼−1

𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 + 𝐸
𝑚(𝑞)−2𝛼

]

= 0, (16)

which, after integration, gives

𝛷(𝑞) = 1
𝑚(𝑞)−2𝛼 ∫ 𝑚(𝑞)−2𝛼−1

𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 − 𝐸
𝑚(𝑞)−2𝛼

+ 𝐶, (17)

where 𝐶 = 𝑐𝑜𝑛𝑠𝑡.
Now it remains only to show that 𝐶 = 𝐸. Looking at Eq. (3), we

manipulate it into

1
2
�̇�2 + 1

𝑚(𝑞)−2𝛼 ∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 − 𝐸
𝑚(𝑞)−2𝛼

= 0. (18)

Comparing Eqs. (12) and (13) with (18), we have

𝛷(𝑞) = 1
𝑚(𝑞)−2𝛼 ∫ 𝑚(𝑞)−2𝛼−1

𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞 − 𝐸
𝑚(𝑞)−2𝛼

+ 𝐸. (19)

And, comparing Eqs. (17) and (19), we then obtain

𝐶 = 𝐸. (20)

The proof is concluded. □

Established the equivalence, the following corollary is immediate:

Corollary. It naturally follows from the theorem that, if Eq. (6) is satisfied,
the solution of the equation of motion (4) equals the solution of the equation
of motion (2).

Remark 1. To show the relationship between the integration constants
𝐸 and 𝐸, we particularize Eq. (6) for some initial condition 𝑞(𝑡 = 0) ≡ 𝑞0:

𝛷(𝑞0) − 𝐸 = 1
𝑚(𝑞0)−2𝛼

[

∫ 𝑚(𝑞)−2𝛼−1
𝑑𝑉 (𝑞)
𝑑𝑞

𝑑𝑞
]

𝑞=𝑞0
− 𝐸

𝑚(𝑞0)−2𝛼
. (21)

4. Application

Eq. (6) thus relates the position-dependent mass problem, specified
by 𝑚(𝑞), 𝑉 (𝑞), 𝛼, and 𝐸, to the classically conservative problem, specified
by 𝛷(𝑞) and 𝐸.

Direct method. Let us assume that the functions 𝑚(𝑞) and 𝑉 (𝑞), the
constant 𝛼, and the constant 𝐸 are given. Then, the quantity 𝛷(𝑞) − 𝐸 is
calculated via Eq. (6). Namely, given the position-dependent mass problem,
which herein is the real problem, we therefrom go in search of the equivalent
conservative problem.

Example 1. The classical Cayley’s falling-chain problem [14, p. 506]
is such that ‘‘(. . . ) a portion of a heavy chain hangs over the edge of a
table, the remainder of the chain being coiled or heaped up close to the
edge of the table; the part hanging over constitutes the moving system
(. . . )’’.

Following [8,10], we recall 𝑚(𝑞), 𝑉 (𝑞), 𝛼, 𝐸, and initial conditions;
i.e. since particles to be captured by the moving system are at rest, then
𝑤 = 0, which renders1

𝛼 = −1. (22)

The coordinate 𝑞 of the lower extremity of the chain is the general-
ized coordinate, and the mass of the moving part is

𝑚(𝑞) = 𝜌𝑞, (23)

1 For the definition of alpha, see Eq. (2).
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