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a b s t r a c t

The conservation laws and conserved quantities for the governing equations of the two-dimensional laminar wake
flow behind a hump on a flat plate are derived. The multiplier method is applied to the linearised governing
equations for small humps and a basis of conserved vectors is constructed. Since, in general, the problem contains
an unknown non-homogeneous boundary condition, each conserved vector needs to be carefully chosen and
additional restrictions need to be applied to ensure that each conserved quantity, which is obtained by integrating
the corresponding conservation law across the wake and imposing the relevant boundary conditions, has a finite
value. Four non-trivial conserved quantities are found; three of which have only now been identified. The four
conserved quantities relate to the conservation of mass, drag and the first and second moments of the momentum
deficit. For each case the existence of a solution that satisfies the governing equations, boundary conditions and
a finite valued conserved quantity is discussed.

1. Introduction

The governing equations for the two-dimensional laminar wake flow
behind a hump situated on a solid wall boundary, also known as the
laminar ‘wall-wake’, are examined. The problem of the wall-wake was
first proposed by Hunt [1]. A boundary layer is perturbed by a small
hump on an otherwise flat plate. Hunt’s [1] approach was to divide the
flow behind the hump into two regions: an inner viscous flow region
near to the wall and an intermediate inviscid region that matches to the
unperturbed boundary layer flow. The wake flow is contained within
the inner viscous flow region [1]. A further investigation into wall-wake
flows using a different approach was performed by Smith [2]. Smith [2]
applied triple deck theory [3,4], which has proved to be very successful
in describing perturbed boundary layer flows, to the problem of the wall-
wake. In addition to the two main regions or decks of flow that Hunt [1]
defined, Smith [2] identified a third deck of inviscid flow outside of the
boundary layer. This third deck is required because the flow outside of
the boundary layer is displaced by the presence of the hump [2]. This
is known as the boundary layer displacement effect.

At first appearance the results by Hunt [1] and Smith [2] are
contradictory. Upon further investigation however, the results can be
reconciled by applying triple deck theory which considers three main
regions or decks of flow [5]. It was argued that Hunt’s approach [1]
solved for the near wake on the triple deck scale where only two decks
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are needed because the boundary layer displacement effect is negligible
in this case [5]. Smith’s solution [2] described the far wall-wake on the
triple deck scale where all three decks are needed in order to include
the boundary layer displacement effect [5]. For both the near and far
wall-wakes, the wake is confined to the lower deck which is bounded
on one side by the flat plate. The governing equations for the wake are
solved subject to the no-slip condition at the solid wall interface, the
matching conditions between the lower and intermediate decks which
differ for near and far wakes, and if applicable, a conserved quantity.
Inclusion of the boundary layer displacement effect results in a non-
homogeneous boundary condition at the interface between the lower
and intermediate decks. In the case of the near wake where the function
describing the boundary layer displacement effect is set to zero, the
boundary conditions between the lower and intermediate decks are
homogeneous.

The governing equations for the wall-wake are non-linear. However,
for very small humps, the governing equations can be linearised [2,5].
When the boundary layer displacement effect is included, the governing
equations and the boundary conditions are, in general, not homoge-
neous [2]. For the far wall-wake, the boundary layer displacement effect
is specified which determines the non-homogeneous boundary condi-
tion [2]. Because the governing equations and boundary conditions
are not homogeneous, a conserved quantity is not needed to complete
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the solution [2,5]. For the near wall-wake, because the boundary layer
displacement effect is negligible, the governing equations and boundary
conditions are homogeneous and a conserved quantity is required
to complete the solution [1]. For both the near and far wall-wakes,
the boundary layer displacement effect is specified. If, however, the
boundary layer displacement effect is not known then the governing
equations need to be solved subject to an unknown non-homogeneous
boundary condition. There is insufficient knowledge on this problem in
the current literature to ascertain as to whether a conserved quantity is
required to complete the solution when the boundary layer displacement
effect is unknown. The aim of the present work is to adapt and apply
existing theory on conservation laws and conserved quantities to the
governing equations of the wall-wake in order to derive a basis for the
conserved vectors and to determine the conditions for which a finite
conserved quantity corresponding to each conservation law exists. If the
boundary layer displacement effect is not specified which then results
in a non-homogeneous boundary condition, it is shown that under
certain conditions finite conserved quantities can be found and that the
boundary layer displacement effect can be determined.

In [6], various approaches to finding the conservation laws for
partial differential equations are discussed. Once a conserved vector has
been obtained, the Lie symmetry associated with this conserved vector
can be calculated and then used to generate the invariant solution [7,8].
For problems where a conserved quantity is required to complete the
solution, the double reduction theorem can be used [9]. Other works
on symmetries and conservation laws for differential equations are
given in [10–22]. In this work the multiplier method [10,23] is used
to calculate a basis of conserved vectors for the governing equations
of the wall-wake when expressed in terms of the velocity components
and when expressed in terms of the stream function. This method has
been used to calculate the conservation laws for the radial and two
dimensional free jets [24] and for the classical wake and the wake
of a self-propelled body [25]. For the governing equations pertaining
to the wall-wake problem, four conservation laws are obtained. One
of these corresponds to the near wall-wake whilst the rest are newly
discovered. Each conservation law is then integrated across the wake
and the relevant boundary conditions are imposed in order to generate
the required conserved quantity. Much consideration needs to be taken
when deriving the conserved vectors. As there is a possibility of an
unknown non-homogeneous boundary condition, convergence of the
integrals arising from integrating a conservation law across the wake is
not guaranteed. However, it is shown how this issue can be overcome.
The conserved quantity for the near wall-wake, which is the moment of
momentum deficit, is re-derived in a systematic way. It is discovered
that each of the three remaining conserved quantities correspond to
the conservation of mass, drag and the second moment of the axial
momentum deficit.

This paper is outlined as follows. In Section 2, a detailed description
of the mathematical model is provided and the governing equations
for small humps along with the boundary conditions are given. In
Section 3 the general theory for the multiplier method is presented. It is
discussed how conserved vectors are chosen for problems with unknown
non-homogeneous boundary conditions. The conservation laws for the
governing equations for the wall-wake are derived in terms of the
velocity components in Section 4.1 and in terms of the stream function in
Section 4.2. In Section 5 the conservation laws are integrated across the
wake to obtain the conserved quantities. Additional conditions that need
to be imposed in order to generate finite conserved quantities are dis-
cussed. The conserved quantities in terms of the velocity components are
given in Section 5.1 and in terms of the stream function in Section 5.2.
In Section 5.3 a summary of the findings on conserved vectors is given
including the requirements for the corresponding conserved quantity to
exist. The physical significance of each conserved quantity is analysed in
Section 5.4. In Section 6 similarity solutions of the governing equations
are studied. Invariance of each conserved quantity enables the form of
the similarity solution to be identified. The similarity solutions are then
solved and it is shown that finite conserved quantities can be obtained.
Conclusions are given in Section 7.

Fig. 1. Stages in a wall-wake flow.

2. Mathematical model

Consider a laminar stream of viscous incompressible fluid flowing
past a small symmetric hump on an otherwise smooth boundary. A
Cartesian coordinate system (𝑥∗, 𝑦∗) is used. The line 𝑦∗ = 0 lies along the
solid wall boundary and the line 𝑥∗ = 0 lies along the axis of symmetry
of the hump. The constant mainstream speed, density and kinematic
viscosity of the fluid are given by 𝑢∗∞, 𝜌, and 𝜈 = 𝜇∕𝜌 respectively, where
𝜇 is the dynamic viscosity. The flow transitions through four different
stages as shown in Fig. 1. In stage A, the far upstream boundary layer
flow is unaffected by the presence of the hump. Stage B represents the
flow over the hump and the flow near to the leading and trailing edges
of the hump. Once the boundary layer flow comes into contact with the
hump, it is perturbed and a wake forms directly downstream of the hump
as shown in stage C. Sufficiently far downstream, the flow reverts to its
upstream configuration as shown in stage D. In this paper, particular
attention is paid to the governing equations that describe the wake flow
region.

Triple deck theory can be used to derive the governing equations for
the wall-wake flow for both the near and far wall-wakes which satisfy
the same governing equations, but different boundary conditions [2,5].
The near wake flow applies for small 𝑥∗ and the far wake flow is
relevant for large 𝑥∗. The 𝑥∗- and 𝑦∗- velocity components and the fluid
pressure in the wake are denoted by 𝑢∗(𝑥∗, 𝑦∗), 𝑣∗(𝑥∗, 𝑦∗) and 𝑝∗(𝑥∗, 𝑦∗)
respectively. The Reynolds number 𝑅𝑒 for the flow is defined in terms
of the upstream boundary layer flow [2]:

𝑅𝑒 =
𝑢∗∞𝐿
𝜈

, (2.1)

where 𝐿 is the development length of the oncoming boundary layer
which determines the boundary layer thickness 𝛿 = 𝐿𝑅𝑒−

1
2 . The

implementation of triple deck theory to this problem relies on the
assumption that the parameter, 𝜖, where [3]

𝜖 = 𝑅𝑒−
1
8 , (2.2)

is small which is true for very large Reynolds numbers. The flow is
further divided into three sub-regions or decks as shown in Fig. 2.

Dimensionless variables are defined as follows:

𝑥∗ = 𝜖𝑛𝐿𝑥, 𝑦∗ = 𝜖𝑚𝐿𝑦,

𝑢∗ = 𝑢∞𝑢, 𝑣∗ = 𝑢∞𝑣, 𝑝∗ = 𝑝∗∞ + 𝜌𝑢∗2∞𝑝, (2.3)

where 𝑛 and 𝑚 are positive integers. Substituting (2.3) into the Navier–
Stokes equation and the continuity equation results in

𝜖𝑚−𝑛𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −𝜖𝑚−𝑛
𝜕𝑝
𝜕𝑥

+ 𝜖8+𝑚−2𝑛 𝜕
2𝑢
𝜕𝑥2

+ 𝜖8−𝑚 𝜕
2𝑢
𝜕𝑦2

, (2.4)

𝜖𝑚−𝑛𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+ 𝜖8+𝑚−2𝑛 𝜕
2𝑣
𝜕𝑥2

+ 𝜖8−𝑚 𝜕
2𝑣
𝜕𝑦2

, (2.5)

𝜖𝑚−𝑛 𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0. (2.6)
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