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a b s t r a c t

We present a detailed bifurcation analysis of the state-dependent delay model of rotary drilling considering only
the axial and torsional modes. This analysis is presented for the general case of independent natural frequencies
of these two modes. The regenerative effect accompanying axial vibrations gives rise to a delayed model with
the delay determined by the torsional oscillations. It is observed that steady drilling loses stability through
a Hopf bifurcation. The nature of bifurcation is ascertained by the method of multiple scales for the general
values of system parameters. Analytical results suggest that both supercritical and subcritical bifurcations exist
for different choices of operating and system parameters. These analytical findings are further confirmed by
numerical simulations. Possible unfoldings of the dynamics near the codimension-2 point, guided by numerical
simulations and analytical results for the codimension-1 Hopf branches, are also presented. We find two different
scenarios at the primary codimension-2 point viz. both Hopf branches having supercritical bifurcation, and one
branch being supercritical while the other being subcritical. Our numerical simulations suggest that the dynamics
near the codimension-2 point is dominated by the low-frequency limit cycles in both the scenarios.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Self-excited vibrations of drill-strings in axial, torsional and lateral
directions are one of the possible reasons for their failure and damages
to the hole walls [1,2]. Therefore, it is necessary to understand the
dynamics and the coupling of various modes of drill-strings during
these self-excited vibrations. A lumped-parameter model including only
the first axial and torsional modes of the drill-string coupled via the
regenerative effect [3–7] is one of the preferred models for such studies.
Bifurcations in the state-dependent delay model of [4] for the special
case of 1 ∶ 1 internal resonance between the axial and torsional modes
has recently been presented by Gupta and Wahi [8]. The analysis
in [8] for this special case reveals the possibility of both subcritical
and supercritical bifurcations. However, the analysis in [9] showed that
the stability boundaries for the general untuned system is qualitatively
different from the tuned system. Hence, a systematic analysis of the
bifurcation characteristics for the general case is required to fully
comprehend the system behavior. This analysis has been presented in
the current work where we have used the method of multiple scales
(MMS) for the analytical treatment of the simple Hopf bifurcations and
numerically studied the dynamics close to the double Hopf point.
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The ‘regenerative effect’ was identified as one of the sources of exces-
sive tool vibration during machining by Tlusty [10] and Tobias [11]. It
is associated with a wavy cut surface on the work-piece due to relative
vibrations between the tool and the work-piece which causes a chip-
thickness variation during the next pass of the tool. This results in
fluctuating cutting forces which further excites the vibrations leading to
a feedback loop. This effect is known as the regenerative effect and the
corresponding model turns out to be a delay differential equation since
the current chip thickness depends on the previous path of the tool. The
simplest model for regenerative machine tool vibrations is a constant
delay differential equation (CDDE). Experimental studies on machine
tool vibration [12–14] and nonlinear analysis of the CDDE model using
analytical methods [12,13,15–18] have shown a subcritical Hopf bifur-
cation only. Later on, Insperger et al. [19] noted that regenerative effect
in machining operations can be more accurately modeled by a state-
dependent delay differential equation (SDDDE) by including tangential
vibrations of the tool. The presence of tangential vibrations leads to an
implicit dependence of the delay on the tangential oscillations of the
tool.

A regenerative axial–torsional model for rotary drilling was probably
developed for the first time by Richard et al. (RGD model) [3]. In this
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model, the axial motion results in the regenerative effect while the
torsional motion is responsible for the state-dependency of the delay.
Hence, the simplest model for regenerative rotary drilling applications
is necessarily a SDDDE. The primary purpose of the RGD model [3]
was to understand the origin of stick–slip oscillations in drill-strings.
We note that the RGD model did not incorporate any damping and
axial stiffness, and stable steady drilling is not possible for any choice of
operating parameters [9,20]. Following on the work of Richard et al. [3],
Besselink et al. [21] and Nandakumar and Wiercigroch [4] included
axial stiffness and damping in the axial and torsional directions in their
models. These modifications in the RGD model led to some region in
the operating parameter space for stable steady drilling as elucidated
in the subsequent analysis [6,7,9,22]. It has to be noted that these
studies [6,7,9,22] on the SDDDE model of rotary drilling focused on
the linear stability and the nonlinear effect of the state-dependency of
the delay was not discussed.

There is limited literature available on the nonlinear analysis of SD-
DDEs. The first such study to the best of our knowledge was performed
by Insperger et al. [23] on the SDDDE model of turning [19]. This
was performed using the numerical continuation package DDEbiftool
wherein the authors observed that the nature of Hopf bifurcation can
change from subcritical to supercritical because of state-dependency of
the delay. This observation was further confirmed by analytical findings
using MMS [24]. It is noted that both these studies were performed for
the special case of 1:1 internal resonance between the vibration modes in
the two directions for which the 2-degree of freedom mechanical model
reduces to a single-degree of freedom. Wahi [24], in his analytical study,
converted the SDDDE near the Hopf point into a perturbed DDE with
a constant delay by expanding the state-dependent delay in a series of
some appropriate small parameter and then applied the MMS procedure
for DDE outlined in [25–28]. Following this analytical approach, Kim
and Seok [29] presented a nonlinear analysis of the general SDDDE
model of turning using MMS. However, the authors did not specify the
exact procedure of getting the slow flow equations and the numerical
results are shown only for the special case of 1:1 resonance between the
two modes. Application of MMS for coupled DDEs in [28] emphasized
the fact that special procedure is required for removal of secular terms
which leads to the slow flow equations in these cases and hence, the
correctness of the results of [29] could not be verified in the absence of
these details.

A detailed bifurcation analysis of rotary drilling with varying oper-
ating parameters was recently presented in [5] for a particular choice
of system parameters. This study incorporated the global nonlinearities
associated with bit-bounce (loss of contact between the drill-bit and the
cut surface) and stick–slip (no rotation of the drill-bit during periods of
motion). Incorporation of these effects necessitated development of an
alternate model for the regenerative cutting mechanism along the lines
of [30]. It is to be noted that for small amplitude vibrations wherein
there is no bit-bounce and stick–slip motions, this global model [5] is
exactly the same as the SDDDE model as was observed from the linear
stability analysis presented in [9]. Bifurcation analysis for the special
case of 1:1 internal resonance between the axial and torsional modes
was recently presented in [8] wherein MMS was applied to the reduced
single-degree of freedom mechanical model along the lines of [24].
Both subcritical and supercritical bifurcations were obtained followed
by fairly complicated dynamics which were unveiled numerically. We
note from the study in [9] that the stable regions for the general axial–
torsional model of rotary drilling is different from the special case of
the 1:1 internal resonance between the two modes. Hence, to fully
understand the nonlinear dynamics associated with the general case of
coupled SDDDE axial–torsional model of rotary drilling, we present a
detailed bifurcation analysis using MMS and numerical simulations in
this paper. The analytical approach using MMS in this paper is a com-
bination of that presented in [8] (for the state-dependent delay term)
and [28] (to handle the higher dimensionality in the mechanical model).
We again observe both supercritical and subcritical bifurcations in

different portions of the stability boundary. Changes in the supercritical
region while varying system parameters leading to interesting scenarios
near the codimension-2 points has also been presented followed by a
numerical unfolding of the dynamics around this point.

Rest of the paper is organized as follows. We present a brief outline
of the development of the SDDDE model of rotary drilling in Section 2
along with its representation as a perturbed CDDE for further analysis.
Linear stability analysis of the equilibrium is presented in Section 3.
In Section 4, nonlinear analysis of the system using MMS is presented
followed by a discussion of these results in Section 5. Section 6 presents
numerical bifurcation results to verify the analytical results of MMS
and unfold the dynamics near the codimension-2 point. Finally, some
conclusions are drawn in Section 7.

2. The mathematical model

In this section, we briefly present the SDDDE model of drill-string
which is employed for the current analysis and its reduction to the
perturbed CDDE model [8]. We have considered the drill-string as a
two degree-of-freedom spring–mass–damper system for the axial and
torsional motions [4,5] as shown in Fig. 1. We have assumed that the top
of the drill-string moves with a constant feed-velocity of 𝑉0 (similar to
that in [4,6,21,22]) which is an idealization for the boundary condition
at the top. The true boundary condition at the top surface involves an
equivalent spring–mass–damper system to model the traveling block and
the hoisting cable [31–35] which adds to the complexity of the model.
The alternate idealization of a constant force at the top results in the
RGD model with no axial flexibility [3,36] which can be obtained as a
special case of the model considered in the present work.

With the assumption of the top of the drill-string moving with a
constant velocity 𝑉0, the equations of motion corresponding to the axial
and the torsional modes can be written as

𝑀𝑈̈ (𝑡) + 𝐶𝑎𝑈̇ (𝑡) +𝐾𝑎
{

𝑈 (𝑡) − 𝑉0𝑡
}

= 𝑊0 − 𝐹𝑐 , (1a)

𝐽𝛷̈(𝑡) + 𝐶𝑡𝛷̇(𝑡) +𝐾𝑡
{

𝛷(𝑡) −𝛺0𝑡
}

= −𝑇𝑐 , (1b)

where 𝛺0 is the angular velocity at the top of the drill-string, 𝑊0 is the
net weight on the drill-bit, 𝐾𝑎 and 𝐾𝑡 are the spring stiffnesses in axial
and torsional directions, respectively, 𝐶𝑎 and 𝐶𝑡 are viscous damping
coefficients in axial and torsional directions, respectively, 𝑀 and 𝐽 are
the combined mass and rotary inertia about the rotational axis of the
drill-string and the bottom hole assembly (BHA), respectively, and 𝐹𝑐
and 𝑇𝑐 represent the force and torque because of the cutting action,
respectively. Note that we have ignored any wear flat on the drill-bit
and consequently there are no frictional forces and torques. The cutting
force and torque on the drill-bit are related to the system and operational
parameters as [3],

𝐹𝑐 = 𝜉𝜖𝑎𝑑(𝑡)𝐻(𝛷̇)𝐻(𝑑(𝑡)),

𝑇𝑐 =
𝜖𝑎2𝑑(𝑡)

2
𝐻(𝛷̇)𝐻(𝑑(𝑡)),

(2)

where 𝐻(.) represents the Heaviside step function, 𝜉 is the cutter
inclination coefficient, 𝜖 is the rock specific strength, 𝑎 is the radius of
the drill-bit, and 𝑑(𝑡) is the instantaneous depth of cut per revolution of
the drill-bit. Assuming that the rock is homogeneous and the drill-bit has
𝑛 identical cutters, the total depth of cut per revolution can be written
as

𝑑(𝑡) = 𝑛𝑑𝑛(𝑡) , (3)

with 𝑑𝑛(𝑡) as the depth of cut per cutter (see Fig. 1(c)) given by [3,4]

𝑑𝑛(𝑡) = 𝑈 (𝑡) − 𝑈 (𝑡 − 𝑡𝑛). (4)

In the above, 𝑡𝑛 is the time taken by the drill-bit to rotate by an angle of
2𝜋∕𝑛 which can be computed through

𝛷(𝑡) −𝛷(𝑡 − 𝑡𝑛) =
2𝜋
𝑛
. (5)
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