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a b s t r a c t

We consider a two-dimensional square lattice model extended by additional not closed neighboring interactions.
We assume the elastic forces between the masses in the lattice to be nonlinearly dependent on the spring
elongations. First, we use an analysis of the linearized discrete equations to reveal the influence of additional
interactions on the properties of the dispersion relation for longitudinal and shear plane waves. Then we develop
an asymptotic procedure to obtain continuum two-dimensional non-linear equations to study the transverse
instability of weakly non-linear localized plane longitudinal and shear waves. We find that the additional
interactions used in the model may affect the sign of the amplitude of the plane strain waves (existence of
compression (minus sign) or tensile (plus sign) plane waves) and their transverse stability.

© 2017 Elsevier Ltd. All rights reserved.

0. Introduction

The study of the discrete model with non-neighboring interactions
between the particles in the lattice has attracted considerable interest
due to the dispersion of waves propagating in such a system [1–8].
In particular, this model is important for the study of the influence of
the microstructure of materials. Dynamic processes in one-dimensional
lattices have been investigated more extensively [1,3,9], while two-
dimensional lattices are mainly considered in the linearized case [3,6,7].
Some two-dimensional processes can be modeled in the one-dimensional
approximation, like plane waves propagation, while the study of
their transverse instability requires two-dimensional consideration. Also
some physical phenomena cannot be modeled in the one-dimensional
case, in particular, for a negative Poisson ratio or auxetic behavior
[10–13].

The structural features of the lattice are usually taken into ac-
count [10,14,15] to describe a negative Poisson ratio. In [11] it was
obtained that a negative Poisson ratio is observed for some directions
in many cubic metals due to their crystalline lattice features. It is also
known that anisotropic systems like cubic ones are typically nonauxetic
or partially auxetic [16]. The relationships for an anisotropic Poisson
ratio in some materials may be found in [17,18]. There is a procedure
for comparing the continuum limits of 2D discrete models with the 2D
limit of the continuum cubic crystal model [15] to establish a connec-
tion between the rigidities of the lattice model and the cubic elastic
constants. It turns out that these relationships hold only for the Cauchy
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condition [19]. It applies to materials with a cubic symmetry where
only central interactions are taken into account; however, deviations
from the conditions may be considerable, e.g., for cubic metals [20].
However, it was found in [21] that the Cauchy relations do not hold for
positive temperatures. Comparison with the 2D model, e.g., the auxetic
properties of 2D media, were studied in [22].

Dynamic processes in lattices have been studied using both discrete
and continuum modeling [1,9]. In the linear case, both discrete and
continuum equations can be solved analytically. However, only a few
discrete non-linear equations, such as the Toda lattice equation or the
Ablowitz–Ladik equation, possess exact solutions [23]. That is why an
approach based on the continuum limit of the original discrete equation
is needed to obtain the governing non-linear continuum equations.
The familiar acoustic branch continuum limit [1,9] requires the long
wavelength approximation and corresponds to the discrete model only
for small wave numbers.

The mechanical properties and stability of lattices depend on their
structure and particle interaction [19,24,25]. Discrete and continuum
models both possess analytical solutions in the linear case, which
allows complex analysis of the mechanical phenomena from micro-
and macroscopic points of view [26]. This analysis becomes crucial for
nano-objects where the discreteness of the atomic structure cannot be
neglected [27]. Nonlinearity is essential for a description of thermo-
mechanical effects [28] including peculiarities such as negative thermal
expansion [29].
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Localized non-linear strain wave propagation with a permanent
shape and velocity and its amplification are of special importance. The
plane waves can be described within the one-dimensional model while
their transverse instability and inclined waves interaction require two-
dimensional consideration [2,23,30–32]. It allows us to model new
types of the wave amplification and localization due to a transverse
instability [23,32,33] or interaction of the plane waves [30,34,35].

In this paper, an extended two-dimensional square lattice model is
considered with the addition of the nearest neighbors interactions of
the central particle. The model also includes a quadratic and a cubic
nonlinearity in the elastic inter-particle forces. Linearized analysis is
used to study the features of the dispersion relation caused by the
inclusion of the extended interactions on the basis of a plane wave
approximation. Further, an asymptotic solution is developed to obtain
the continuum non-linear governing equations for both longitudinal
and shear plane strain waves disturbed in the direction perpendicular
to their direction of propagation. The influence of the long-range
interactions on a transverse instability of both types of plane waves
is studied to see whether a two-dimensional localized non-linear wave
can appear from localized input or is due to a resonant plane waves
interaction.

1. Statement of the problem

Let us consider a square lattice discrete structure with the particles
having equal masses 𝑀 , see Fig. 1. One can distinguish three kinds of
interaction in contrast to the two used for the standard model. That is
why we call it an extended square lattice model. The central particle with
the number 𝑚, 𝑛 interacts with four horizontal and vertical neighbors by
the springs with linear rigidity 𝐶1 and non-linear rigidities 𝑄 and 𝑄3.
The relative distance in the unstrained state is assumed to be equal to 𝑙.
The contribution to the potential energy is
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where 𝑥𝑚,𝑛, 𝑦𝑚,𝑛 are the horizontal and vertical displacements of particle
𝑚, 𝑛. The expressions for the elongations of the springs, △𝑙𝑖 are

△ 𝑙1 = 𝑥𝑚+1,𝑛 − 𝑥𝑚,𝑛, △ 𝑙2 = 𝑦𝑚,𝑛+1 − 𝑦𝑚,𝑛,

△ 𝑙3 = 𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛, △ 𝑙4 = 𝑦𝑚,𝑛 − 𝑦𝑚,𝑛−1

where the springs are numbered counter-clockwise. The next group of
interacting particles is composed by four diagonal neighboring particles
whose positions are described by the angles 𝜙 = 𝜋∕4+𝜋 𝑘∕2, 𝑘 = 0,… , 3.
The linear rigidity of the connecting springs is 𝐶2 while the non-linear
rigidities are 𝑃 and 𝑃3. The contribution to the potential energy is
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The final group consists of eight particles whose positions are
characterized by the angles 𝜓 , 𝜉, so as tan𝜓 = 1∕2, tan𝜒 = 2. Then
the elongations are

△ 𝑙9 = cos(𝜓)(𝑥𝑚+2,𝑛+1 − 𝑥𝑚,𝑛) + sin(𝜓)(𝑦𝑚+2,𝑛+1 − 𝑦𝑚,𝑛),

△ 𝑙10 = cos(𝜒)(𝑥𝑚+1,𝑛+2 − 𝑥𝑚,𝑛) + sin(𝜒)(𝑦𝑚+1,𝑛+2 − 𝑦𝑚,𝑛),

△ 𝑙11 = cos(𝜒)(𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛+2) + sin(𝜒)(𝑦𝑚−1,𝑛+2 − 𝑦𝑚,𝑛),

△ 𝑙12 = −cos(𝜓)(𝑥𝑚,𝑛 − 𝑥𝑚−2,𝑛+1) + sin(𝜓)(𝑦𝑚−2,𝑛+1 − 𝑦𝑚,𝑛),

△ 𝑙13 = cos(𝜓)(𝑥𝑚,𝑛 − 𝑥𝑚−2,𝑛−1) + sin(𝜓)(𝑦𝑚,𝑛 − 𝑦𝑚−2,𝑛−1),

△ 𝑙14 = cos(𝜒)(𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛−2) + sin(𝜒)(𝑦𝑚,𝑛 − 𝑦𝑚−1,𝑛−2),

△ 𝑙15 = cos(𝜒)(𝑥𝑚+1,𝑛−2 − 𝑥𝑚,𝑛) + sin(𝜒)(𝑦𝑚,𝑛 − 𝑦𝑚+1,𝑛−2),

△ 𝑙16 = cos(𝜓)(𝑥𝑚+2,𝑛−1 − 𝑥𝑚,𝑛) + sin(𝜓)(𝑦𝑚,𝑛 − 𝑦𝑚+2,𝑛−1).

while the contribution to the energy is

𝛱3 =
1
2
𝐶3

16
∑

𝑖=9
△𝑙2𝑖 +

5
√

5
3

𝑆
16
∑

𝑖=9
△𝑙3𝑖 +

25
4
𝑆3

16
∑

𝑖=9
△𝑙4𝑖 ,

where 𝐶3 is the linear rigidity, and 𝑆 and 𝑆3 are the non-linear rigidities.
Then the total potential energy is

𝛱 = 𝛱1 +𝛱2 +𝛱3,

and the kinetic energy is
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.

Then the Lagrangian, 𝐿 = 𝑇 − 𝛱 , can be composed, and the
Hamilton–Ostrogradsky variational principle applied to obtain the dis-
crete governing equations of motion.

2. Linear analysis

In this Section the influence of the extended interactions on the
discrete dispersion relation is studied using plane waves as an example.
Also a linearized long-wave continuum limit is compared with the model
of a cubic crystalline lattice to see whether extended interactions can
affect the auxetic features of the continuum model.

The linearized equations of motion (when 𝑃 = 𝑃3 = 𝑄 = 𝑄3
= 𝑆 = 𝑆3 = 0) obtained from the variational principle are further
reduced when the plane waves propagating in horizontal direction are
studied. In this case no variation in 𝑛 happens, and the equations of
motion are
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2.1. Longitudinal plane waves

The longitudinal wave solution to Eqs. (1), (2) is sought in the form

𝑥𝑚,𝑛 = 𝐴 exp(𝚤(𝑘𝑥 𝑙 𝑚 − 𝜔 𝑡)), 𝑦𝑚,𝑛 = 0. (3)

It gives rise to the dispersion relation,
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First, it follows from Eq. (4) that the wave velocity is always higher in
the extended case than in the standard case (𝐶3 = 0). Also the shape
of the curve for 𝜔2 may contain more maxima–minima in the extended
case, see Fig. 2. Then the phase velocity varies in 𝑘 𝑙 different from the
velocity in the standard case as shown in Fig. 3. In particular, there
may be an increase in the velocity at some interval, see dashed line in
Fig. 3.
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