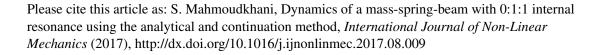
Accepted Manuscript

Dynamics of a mass-spring-beam with 0:1:1 internal resonance using the analytical and continuation method

S. Mahmoudkhani


PII: S0020-7462(17)30349-9

DOI: http://dx.doi.org/10.1016/j.ijnonlinmec.2017.08.009

Reference: NLM 2895

To appear in: International Journal of Non-Linear Mechanics

Received date: 9 May 2017 Revised date: 27 July 2017 Accepted date: 31 August 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Dynamics of a mass-spring-beam with 0:1:1 internal resonance using the analytical and continuation method

S. Mahmoudkhani^a

^a Aerospace Engineering Department, Faculty of New Technologies and Engineering, Shahid Beheshti University, GC, Velenjak Sq., Tehran, Iran,

s mahmoudkhani@sbu.ac.ir

Abstract

The nonlinear harmonic response of an autoparametric system comprised of a linear oscillator with a vertically attached flexural beam is investigated and the capability of the beam as a vibration absorber is assessed. A weak torsional spring is used for constraining the rotation of the beam giving rise to an almost non-flexural rotational mode with a low frequency. The system parameters are also tuned to enforce the zeroto-one-to-one internal resonance condition. The Lagrange's formulation accompanied by the assumed-mode method is used to derive the discretized equations based on the order three nonlinear Euler-Bernoulli beam theory. An analytical solution is developed based on the method of multiple scales where the generalized coordinate corresponding to the non-flexural rotational mode is approximated by higher order perturbation expansion than the other coordinates, due to much larger contribution of the non-flexural rotation to the response. Comprehensive response and bifurcation analysis are performed using analytical and direct numerical solutions. The results are obtained for vertically-aligned and also initially inclined beams and various interesting behaviors are recognized for different non-dimensional system parameters. Different types of bifurcations such as the Pitch-fork, Hopf, Period-doubling and symmetry breaking bifurcations are observed in the solution of slow-flow equations and some of them are found to be beneficial for vibration absorption in a limited range of excitation amplitudes and frequencies.

Keywords: zero-to-one-to-one internal resonance, flexural pendulum beam, simultaneous non-flexural and elastic deformation, quasi-periodic oscillation

Download English Version:

https://daneshyari.com/en/article/7174537

Download Persian Version:

https://daneshyari.com/article/7174537

<u>Daneshyari.com</u>