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a b s t r a c t

This paper demonstrates the methodology for implementing surface elasticity and surface tension in
pure bending representatives of the well-known large deformation families: bending of a rectangular
block, bending of one cylindrical sector into another sector of a different curvature and straightening of a
cylindrical sector. Constitutive equations based on the surface energy decoupling are proposed to model
the surface behavior. Changes in mechanical response of hyperelastic bodies at smaller scales, particu-
larly surface effects on the resultant force, resultant moment and bending stiffness are analyzed for the
special case of a neo-Hookean solid and found to be consistent in all three pure bending problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanostructured materials, nanoscale structural elements and
nanodevices have become pervasive in modern world due to their
auspicious mechanical, thermal, electrical, optical and magnetic
properties. Central to the discipline of nanomechanics is the ob-
servation that the overall deformation of the bulk at nano-scale is
significantly affected by the bounding surface. Hence, classical
continuum mechanics models should be generalized to capture
the changes that happens with the body when the scale of the
problem decreases and the surface-to-volume ratio becomes
considerable.

An outstanding theoretical insight on the surface and interface
effects in solids was firstly introduced by Gurtin and Murdoch
[1,2]. The study builds on the assumption suggesting that the
surface or interface can be represented by a zero-thickness
membrane possessing its own mechanical properties and surface
tension. As a result, the surface stresses develop around the
boundary or interface of the body when it is deformed, while the
residual stresses appear here as well, even in the absence of ex-
ternal loadings. Later, Steigmann and Ogden have generalized this
model even further by replacing the membrane with a shell to
account for its flexural resistance [3]. Mathematical explanation of
Gurtin-Murdoch is given in the recent publication by Ru [4], while
Eremeyev provides a detailed comparison with the Steigmann–
Ogden model [5].

In the framework of linear elastic deformations, the above the-
ories were employed in enormous amount of works to show the

pronounced effects of surface (see works [6–8], literature reviews
[9,10] and references contained therein). As for the finite de-
formations, studies considering the surface or interface effects in
the framework of hyperelasticity appear less frequently [11–13].
This is surprising considering that nanorubbers and nanofillers are
the emerging applications in rubber industry. We believe that one
of the explanations for the gap between the number of available
studies in the framework of linear elasticity and non-linear elasti-
city is the absence of surface material constants for typical elasto-
mers. In fact, to the best of authors' knowledge, surface material
constants were determined only in the framework of small de-
formations for a limited number of metals using atomistic simula-
tions and highly advanced experimental measurements [14]. An-
other arising reason for this gap can be due to the lack of research
into constitutive modeling of hyperelastic surfaces. Research on the
nonlinear behavior of bulk material is extensive, while options for
surface modeling are very limited. That is why one of the specific
features of this work is our proposed general form of constitutive
equations using decoupled energy formulation.

When the form of energy density does not matter, it is very
common to analyze different material effects in the well-known
families of universal solutions, which are named accordingly be-
cause they are universal to all nonlinear incompressible isotropic
material and all material models (Truesdell provides the detailed
description of these families [15]). A couple of studies have fo-
cused on some representatives of large deformations families
taking into account the effects of surface. Altenbach et al. have
demonstrated the critical effect of residual surface stresses and
surface stresses on the mechanical response of a circular cylinder
subjected to tension [16]. This research has previously been ex-
tended by including torsional deformations and changes in the
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Poynting effect and torsional rigidity due to the surface have been
highlighted [17]. Bending of a rectangular block was tackled using
Steigmann–Ogden surface model [18], but the emphasis of the
work was the bifurcation analysis, not changes in the effective
material properties at smaller scale. Here we would like to study
three pure bending representatives of large deformations families
using Gurtin–Murdoch approach, particularly problems of bending
of a rectangular block, bending of one cylindrical sector into an-
other sector of a different curvature, and straightening of a cy-
lindrical sector. Our motivation here is not only to demonstrate the
impact of surface on certain effective material properties such as
bending rigidity and test the proposed constitutive equations; but
also to clarify the procedure of implementation of the surface
model using three mathematically different but physically similar
deformations that should lead to consistent mechanical responses.
In our opinion, this could trigger research interest to the area of
surface hyperelasticity.

This paper is organized as follows: in Section 2 we consider the
methodology for implementing surface effects and suggest the
form of constitutive equations based on decoupled energy for-
mulation, derivation details of which are summarized in the
Appendix. Additionally, in the subsection of Section 2, the
neo-Hookean energy density form for both bulk and surface is
detailed. This is followed by the discussion on the surface material
parameters used in numerical calculations. Section 3 contains
three subsections devoted to the aforementioned different pure
bending problems: bending of a rectangular block, bending of one
cylindrical sector into another sector of a different curvature,
straightening of a cylindrical sector. Each of these subsections has
the description on how surface effects were implemented and
contains discussions on numerical calculations and consistency of
derived results. Conclusions of the conducted study are summar-
ized in Section 4.

2. Methodology

We consider the equilibrium of a deformable solid occupying a
region Ω0 and made of a homogeneous, initially isotropic and
incompressible hyperelastic material. Part of the surface Ω∂ s

0 of
this body is coated with a thin reinforcing film representing the
surface effects. This film is made of a homogeneous, isotropic
hyperelastic material with elastic constants different from those of
the bulk. The rest of the boundary is denoted by Ω∂ b

0 , so that
Ω Ω Ω∂ = ∂ ∪ ∂b s

0 0 0 (Fig. 1a). When subjected to external loadings, the
deformation gradients F and F s are used to map the body and
coating, respectively, from reference configuration Ω0 and ∂Ω0 to
current configuration Ω and Ω Ω Ω∂ = ∂ ∪ ∂b s (Fig. 1b).

Since the bulk is made of an incompressible material, the
constitutive law relating the Cauchy stress tensor σ with material
properties looks as follows:

σ = − + − −I B Bp 2 2 ,1 2
1

Here p is the Lagrange multiplier to ensure incompressibility, I is
the identity tensor, =B FFT is the left Cauchy–Green strain tensors,

= ∂
∂i Ii

(i¼1,2) with invariants = BI tr1 and = ( ) −⎡⎣ ⎤⎦B BI tr tr2
1
2

2 2 .

Since the surface is modeled as a thin film perfectly attached to
the bulk and all deformations along the thickness are uniform, we
can state that the surface area is not constant. Thus, as for regular
compressible bodies [19], it makes sense to consider its surface
area-changing and area-preserving deformations separately. To
this end, we assume that the surface strain energy is decoupled
into the part const that does not change the area of the surface and
the part var that does, i.e.,

= ( ¯ ) + ( ) = =
¯ = ( ) ¯ = ¯ = ¯ ¯ = ( ) ( )− −

B F B F F

F F F B F F B

J J

J J

with det , ,
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s
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s s s s s s sT s s1/2 1

Here Js is the surface area ratio, Bs represents the left Cauchy–
Green surface strain tensor, while F̄ s and B̄s are the intentionally
introduced (unimodular) deformation gradient and left Cauchy–
Green strain tensors associated with surface area-preserving de-
formations and energy const .

Using lengthy algebraic formulations and the split form of the
surface energy density (1), we derive the decoupled form of con-
stitutive law (see Appendix for details)

σ σ σ= ( ¯ ) + ( ) = ¯ ∂
∂ ¯ +

∂
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IJ
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s
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s

s

where σ s is the surface Cauchy stresses, I s is the second-order
surface identity tensor and “dev ”s is used to denote a deviatoric
part of a second-order surface tensor, which is expressed for an
arbitrary surface tensor M as

= − ( )M M M Idev tr .s s1
2

Also, derivative of a scalar-valued tensor function ( )Mf with re-
spect to surface tensor M is the following second-order tensor

= ⊗∂ ( )
∂

∂ ( )
∂ e e .M

M
Mf f

M i j
ij

Here symbol “⊗” is used to denote a usual

tensor product or dyad of the orthonormal basis vectors ei and ej.
Let us look at the following arguments to explain what pre-

mises for the decoupled constitutive law (2) are. First of all, the
decoupled volumetric and isochoric formulation itself is com-
monly used for constitutive models of compressible hyperelastic
materials [19,20]. The term σ ( )Jvar

s s , denoting the surface area
changing stresses, has been well established in surface mechanics
to represent surface tension or residual effect appearing at smaller
scales [1,5]. For better understanding of the surface area preser-
ving stresses σ ( ¯ )Bconst

s s and particularly its dependency on B̄s, it first
should be noted that many constitutive models such as neo-
Hookean and Arruda-Boyce [21] have physical interpretations
which depend on a volumetric density of polymer chains. As such
when used for a compressible material these theories make the
most sense when they depend on the unimodular part of the left
Cauchy–Green deformation tensor, in terms of which the isochoric
stresses are formulated. Although, significantly less theoretical
work has been completed for the elasticity of surfaces which un-
dergo large deformations and we do not know of any micro-
mechanical models which provide a physical interpretation of
surface elasticity, we postulate that, like in the case compressible
hyperelasticity, the large changes in surface area induced by the
finite deformations will significantly alter the aerial density of
polymer chains on the surface of the material. Hence we believe
that there is a stronger physical motivation to express the con-
tribution to the surface stress from surface elasticity in terms of B̄s

than on Bs as was done in the past [16].
Finally, to couple deformations of the solid and thin film, we

introduce the following boundary value problem, for which ad-
dition of the surface effects gives a rise to a nonstandard boundary

Fig. 1. Common reference configuration (a) and current configurations (b) for the
body with surface effect.
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