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a b s t r a c t

This paper investigates the mechanics of clearance of an embedded particle in a lubrication layer of
viscoelastic fluid. We show theoretically that in a slider bearing domain containing a viscoelastic fluid,
the oscillating shearing motion of a wall aids in transporting away any embedded particle towards the
moving boundary. The impact of geometry and material properties of the fluid layer are explored by
coupling theoretical and numerical methods. Our approach suggests a possible mechanism by which the
human eye could clear out any debris beneath the eyelid, under responsive blinking. Our simplified
analysis brings to bear interesting approaches from physics and engineering upon a very complex bio-
logical problem and could provide essential clues about the physiological design of the tear film.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we discuss a fluid solid interaction problem.
Specifically, we study the motion of a particle in a lubrication layer
of a viscoelastic fluid which is driven by the quasi-periodic
shearing motion of its boundary. The current paper is an extension
of the work by Huang et al. [17] who discuss the lubrication flow of
second grade fluids with constant viscosity in a similar geometry
to our own, but goes beyond it as well. The literature on lubrica-
tion flows of non-Newtonian fluids is vast. Some studies of mar-
ginal relevance to our own include those by Park and Kwon [31]
who obtained numerical solution for the non-inertial lubrication
flow for power law fluids and Bujurke et al. [8], who examine
lubrication flow and load carry capacity of a second order fluid in a
geometry with approaching parallel surfaces. In the papers by
Bourgin [4], Bourgin and Tichy [5] and Sawyer and Tichy [35] a
perturbation method in the Deborah number, De, is used to obtain
an approximate solution to the viscoelastic lubrication equations
with a second order fluid and with various boundary conditions.
More recently, Shah et al. [38] used the homotopy method to
obtain approximate solutions to the lubrication flow in a slider
bearing geometry with a power-law fluid. In all of the above pa-
pers the viscoelastic parameter, the Deborah number De was seen
to strongly effect the flow properties as well as the shear-depen-
dent viscosity index. Our paper is a generalization of these pre-
vious studies. Also, this work goes beyond the examination of the
flow; we additionally consider the induced motion of an inertial

particle trapped in this fluid layer.
The problem is studied in two parts: (i) the flow of a visocoe-

lastic fluid in a slider bearing domain using analytic techniques
and (ii) the induced motion of any tracer particle embedded in the
fluid layer (see Fig. 1) due to oscillatory shearing motion of one of
the boundaries, studied numerically. Our initial hypothesis is that
the fluid layer, being non-Newtonian and viscoelastic, serves the
purpose of transporting out any embedded particles, away from the
stationary boundary. Once we have a way to compute the internal
forces of the fluid, we can model their influence on foreign bodies
in the fluid using the model suggested by Wiberg and Smith [43].
In their paper, the authors suggest an empirical model which ac-
counts for drag and lift forces in addition to added mass and the
Basset forces induced upon a suspended particle in a fluid.

This problem is motivated by the fundamental mechanics of
the tear film flow in the eye. Our analysis helps shed light on the
mechanics of tear film under blinking motion of the eyelid and the
process of debris clearance. This study is also pertinent to any area
which is concerned with lubrication and protection. The current
study builds on the existing studies concerned with viscometric
flows of non-Newtonian fluids [23,11,15,17,34]. In the eye, the
fluid that serves as the lubricating layer (see Fig. 1) is thought to
consist of a very thin lipid layer, an aqueous layer, and a mucus
layer although modern theories suggest a less distinct parts de-
marcation of the tear film [10,13,18,30]. In any case, the bulk of the
tear film is composed of what most people think of when they
think of tears: the aqueous layer [27]. This layer, which is enriched
saline, serves to moisten the eye and provide nutrients and is
present both on the surface of the open eye and under the eyelid
[28]. Mucus is a secreted fluid that is a sticky water-insoluble gel
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formed by non-covalent linkages. The changes over time of the
linkages within the mucus generate the flow properties of this gel.
The mucus material clings to epithelial surfaces serving the pri-
mary purposes of protection and lubrication [1,12,42]. The lipid
layer serves mostly to reduce evaporation of the aqueous layer and
resides mostly between the two edges of the eyelid and will be
ignored in this study [7]. The aqueous layer behaves strictly as a
Newtonian fluid [16] while the mucus layer, which lies between
the aqueous layer and the surface of the eyeball displays non-
Newtonian characteristics; its molecular composition gives it a
shear dependent and elastic character [29]. In addition to serving
as a lubricant for the eyelid and as an adhesive that keeps the
aqueous layer coating of the eyeball in place, it also serves in the
role of a protector of the eye. Also, along with certain molecules
and enzymes that work to chemically preventing disease from
reaching the eye, there is some unclarified process whereby mucin
moleculars wrap around unwelcome particles and serve to remove
them from the tear film [20]. Details about the physiological
properties of the tear film can be found in the literature
[9,13,18,30,41,45]. It is important to note that the analysis in this
paper takes up a toy model to understand the mechanics of pro-
tection and also to clarify the role of viscoelasticity in the overall
process of clearance; the parameters chosen in this study do not
coincide with those relevant to the eye. We propose a fluid model
with just a single homogeneous fluid layer given by the second-
order non-Newtonian fluid equations with variable viscosity, re-
ferred to as the modified second order fluid equations [21,22,24]. It
is clear that the overall system is a very complex one where much
more remains to be understood, about physical domain and ma-
terial makeup of the tear film. A full fledged modeling of this
system remains a daunting task and we see it best to approach the
problem in a series of less complicated steps.

In Section 2, we treat the problem of steady flow of the mod-
ified second order fluid in a slider bearing geometry. Asymptotic
analytical solutions for the fluid flow and stress induced upon the
walls are first obtained. Section 3 then treats the formulation of
the particle equations coupled to a quasi-steady version of the
flow derived earlier and its numerical solutions. The paper con-
cludes with a discussion of our results and the impact of para-
meters such as the shear-rate index, magnitude of viscoelasticity
and slope of the channel walls, in Section 4.

2. The fluid equations

We consider the flow of a viscoelastic fluid with variable visc-
osity in a slider bearing geometry (see Fig. 1). The lower plate is
capable of moving with a constant velocity, U, while the upper
plate is fixed at a fixed angle, a thus allowing for deviations from a

perfectly parallel plate situation.1 The equation ( ) = +h x h mx1 ,
with ( ) =h h0 1 and ( ) =h L h2, describes the distance between the
two plates as a function of x and m is the slope of the top plate; in
principle, h can be any function of x. The governing equations
describing the system are given by the conservation of linear
momentum:

= ( )div
D
Dt

T
u

1

where = ( )u v wu , , indicates the velocity field, D
Dt

represents the

total derivative and the stress tensor is given by

η α α= − + + + ( )pT I A A A 21 1 1
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q
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representing a generalized second grade fluid [24,21,22]. Here p is
the isotropic pressure and α α,1 2 are the first and second normal
stress coefficients, respectively. The viscosity is taken to be of the
power-law type in order to capture shear-thinning and thickening
behavior for varying values of q, with γ ̇ = | |A A:1

2 1 1 representing
the shear rate. We define the deformation tensors in Eq. (21) as

( )= ∇ + ∇ ( )A u u 41
T

( )= ∇( ) + ∇ + ∇ ( )A u A A u u A . 52 1 1
T

1

Additionally, the incompressibility condition applies, hence

( ) = ⇒ ∂ + ∂ = ( )u vudiv 0 0. 6x y

Since the problem is independent of the z-direction, we treat
the problem as two dimensional. We use Eq. (6) and scale ap-
proximations, ⪢v u, ⪢∂

∂
∂
∂

u
x

u
y

and ⪢∂
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∂
∂

v
x

v
y
, and assume time in-

dependence, i.e. steady state flow, to simplify the above equations.
The scale approximations and incompressibility suggest that (i)

= ϵv
u

and (ii) = ϵh
L

. As a result, the leading order components,

up to (ϵ)o , of the extra stress tensor reduce to the form:
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For arbitrary values of ∈q R the problem remains analytically
unsolvable, except in simple cases such as =q 1 or 2. However, the
problem becomes tractable in the special case of | |⪡q 1 leading us to
approximate the viscosity function using the binomial approx-
imation:

( ) ( )η γ η κγ η κγ̇ = + ̇ ≈ ( + ̇ )q1 1 /2 .
q

0 0

As a result, the components of the extra stress tensor, with the
lubrication approximation applied to the viscosity term, reduce to
the form

Fig. 1. A schematic of the slider bearing geometry employed in this study. The top
plate is held fixed while the bottom plate slides with velocity U . The slope of the
top plate is varied based on appropriate choice of h1 and h2.

1 We model the problem being studied, in the standard manner as one where
the bottom plate is moving while the top plate is fixed. This is the reverse case to
that of the human eye where the eyelid is akin to the bottom moving plate. Since
gravity is being ignored in this problem, our choice can be justified by frame
invariance.
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