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a b s t r a c t

Presented herein is a comprehensive investigation on the size-dependent pull-in instability of
geometrically non-linear rectangular nanoplates including surface stress effects undergoing hydrostatic
and electrostatic actuations. To this end, based on the Gurtin–Murdoch theory, a non-classical
continuum plate model capable of incorporating size-effects is developed; then, by means of the
principle of virtual work, the governing equations of the actuated nanoplate are obtained. Subsequently,
the generalized differential quadrature (GDQ) method is used to discretize the governing equations and
associated boundary conditions, before solving numerically by the pseudo arc-length algorithm. Finally,
the influences of important parameters including the geometrical non-linearity, thickness of the
nanoplate, surface elastic modulus, residual surface stress and boundary conditions on the pull-in
behavior of the actuated nanoplate are thoroughly studied. In addition, the effect of the material on the
pull-in voltage and pressure is investigated by comparing the results obtained from nanoplates made of
two different materials including aluminum (Al) and silicon (Si).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

List of endless applications of micro and nanoplates in the areas
of micro and nano-electromechanical systems (MEMS and NEMS)
has motivated scientists to broaden their investigation to compre-
hend all aspects and phenomena associated with these classes of
new materials. The pull-in instability is a discontinuity related to
the interaction of the elastic and the electrostatic forces, and was
firstly introduced by Nathanson et al. [1] and Taylor [2]. By
imposing a potential difference, the structure deforms due to
electrostatic forces. When the applied potential difference sur-
passes a critical value which is popular as pull-in voltage, the
elastic force can no more withstand the electrostatic force and the
system fails to establish a force balance without a physical contact;
hence, collapse would be unavoidable. The pull-in instability is
mostly studied in the framework of classical continuum theories;
while, these theories are not capable of considering size effects in
nanostructures; conversely, it is demonstrably approved that the
pull-in instability of nanomaterials are size-dependent [3]. Accord-
ingly, a primacy must be given to developing unconventional
continuum theories able to incorporate size effects in micro and

nanostructures such as non-local elasticity, couple stress elasticity,
strain gradient elasticity and surface elasticity theories [4–11]. One
of the most effective size dependent theories is proposed by
Gurtin and Murdoch [10,11] in which they developed a theoretical
concept based on the continuum mechanics including surface
stress effects. From their proposition, the surface layer of a solid
is a mathematical layer of zero thickness with different material
properties from the underlying bulk that is completely attached by
the membrane. This theory has been applied by many researchers
to study the mechanical behavior of nanostructures [12–15]. Based
on a size-dependent model, Miller and Shenoy [16] studied the
pure bending and unidirectional tension of nanobars and nano-
plates. Their results were indicated to be in excellent agreement
with the atomistic simulation results via the selection of suitable
material constants for the surface layer. Moreover, based upon the
Gurtin–Murdoch elasticity theory, Shenoy [17] investigated the
size-dependent torsional rigidities of nanosized structural ele-
ments with considering surface energy effects. Sapsathiarn et al.
[18] proposed a surface stress beam model using the Gurtin–
Murdoch elasticity theory and showed that their model can
predict the experimental results through size-independent prop-
erties such as bulk modulus and surface residual stress.

In MEMS and NEMS, when the dimension decreases, the surface
forces such as Casimir force, van der Waals and electrostatic forces
become more important. In a realistic case, the Casimir interaction
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between two surfaces largely depends on the several factors such as
the dielectric properties of the surfaces and the geometric para-
meters [19,20]. According to the equilibrium conditions, in the
absence of external loading, the surface tension initiates a com-
pressive residual stress field in the bulk of the nanoplate. Hence,
based on generalized Young–Laplace equations, it is deduced that
the surface tension reveals itself in a non-classical boundary
condition giving the force in the bulk of nanostructures to equili-
brate the surface tension. The stress field in the bulk and residual
surface stress are considered as a residual stress field in nanos-
tructures, which are not generally homogeneous and are associated
with zero traction on the boundary of nanostructures. Since the
nanoplate will be very thin, the residual stress is high. Residual
stress in the bulk can be computed by the equilibrium condition.
This self-equilibrium condition (without external loadings) under
the action of surface tension is usually recognized as the reference
configuration, from which nanostructures experience an elastic
deformation. There are some rare works in the literature which
have recognized the significance of surface tension and the residual
stress field in the bulk induced by surface tension on the elastic
deformations of nanostructures [10,13].

Only a small proportion of investigations is devoted to study
the size-dependent pull-in instability of nanostructures. In this
direction, Fu and Zhang [21] represented a modified continuum
model of electrically actuated nanobeams by considering surface
elasticity. They simulated the surface layer by means of Gurtin and
Murdoch's theory of surface elasticity and modeled the bulk
deformation kinematics by employing the Euler–Bernoulli beam
theory. Furthermore, in a recent work, Ansari et al. [22] on the
basis of a modified continuum model investigated the size-
dependent pull-in behavior of hydrostatically and electrostatically
actuated rectangular nanoplates including surface stress effects.
They used the Gurtin–Murdoch theory and Hamilton's principle to
obtain the governing equations.

To our best knowledge, all efforts concerned with the pull-in
phenomenon are restricted to linear studies; this paper is accom-
plished to shed light on the pull-in behavior of geometrically non-
linear rectangular nanoplates including surface stress effects and
undergoing hydrostatic and electrostatic actuation. To this end, the
Gurtin–Murdoch theory is employed to consider both size and
surface stress effects. Based on the principle of virtual work, the
governing equations and associated boundary conditions are
derived and then after being discretized by the GDQ method, are
solved numerically through pseudo arc-length algorithm. Finally,
the results obtained from linear and non-linear responses are
compared and effects of the thickness of nanoplates, surface
elastic modulus, residual surface stress and boundary conditions

on the pull-in voltage and hydrostatic pressure of the actuated
nanoplate are studied.

2. Governing equations and corresponding boundary
conditions

A uniform nanoplate with the length a, width b and thickness h
as depicted in Fig. 1 is considered. The initial air gap between the
nanoplate and infinite ground plane is G. The nanoplate is
subjected to the combined uniform hydrostatic force q0 and non-
uniform electrostatic force due to the applied voltage V. We can
introduce a coordinate system ðx; y; zÞ on one side of the mid-plane
of the nanoplate. The upper and lower surfaces of the nanoplate at
z¼ þ h=2 and z¼ � h=2 are symbolized by Sþand S� , respec-
tively. The displacement componentsðux; uy; uzÞ along the axes
ðx; y; zÞ can be written as

ux ¼ uðx; yÞ�z
∂wðx; yÞ

∂x
; uy ¼ vðx; yÞ�z

∂wðx; yÞ
∂y

; uz ¼wðx; yÞ: ð1Þ

where uðx; yÞ and vðx; yÞ are mid-plane displacements, wðx; yÞ is the
lateral deflection of the nanoplate. On the basis of the von-Karman
hypothesis, the non-linear strain–displacement relations can be
expressed as

εxx ¼ u;x�zw;xxþ1
2w

2
;x; εyy ¼ v;y�zw;yyþ1

2w
2
;y;

εxy ¼ 1
2 ðu;yþv;xþw;xw;yÞ�zw;xy: ð2Þ

Based upon the linear elasticity, the stress components can be
achieved as

σxx ¼ ðλþ2μÞ u;xþ1
2w

2
;x�zw;xx

� �
þλ v;yþ1

2w
2
;y�zw;yy

� �
;

σyy ¼ ðλþ2μÞ v;yþ1
2w

2
;y�zw;yy

� �
þλ u;xþ1

2w
2
;x�zw;xx

� �
;

σxy ¼ μðu;yþv;xþw;xw;y�2zw;xyÞ: ð3Þ
where parameters λ and μ show the classical Lame constants and
can be obtained through

λ¼ Eν
1�ν2

; μ¼ E
2ð1þνÞ ð4Þ

here E and ν denote the Young's modulus and Poisson's ratio,
respectively. Since the classical continuum mechanics are unable
to consider the atomic features of nanostructures, they must be
modified; one efficient method is based on the Gurtin–Murdoch
theory that incorporates size-effects into the conventional con-
tinuum approach. Owing to the fact that there is always interac-
tion between the elastic surface and bulk material, the nanoplate
is mostly undergoing in-plane loads in various directions which
leads to surface stresses. According to the Gurtin–Murdoch theory
these surface stresses can be computed by employing following
surface constitutive equations

σs
αβ ¼ τsδαβþðτsþλsÞεγγδαβþ2ðμs�τsÞεαβþτsus

α;β

σs
αz ¼ τsus

z;α
ð α; β¼ x; yÞ

ð5Þ
where τs is the surface residual stress parameters. Also, λs and μs

are the surface Lame constants and can be obtained through

λs ¼ Esυs

1�υs2
; μs ¼ Es

2ð1þυsÞ ð6Þ

here and Es and υs are the surface elastic modulus and surface
Poisson's ratio, respectively.

Accordingly, the surface stress constituents at the upper and
lower surfaces of the nanoplate can be achieved as

σs7
xx ¼ ðλsþ2μsÞ u;xþ

1
2
w2

;x8
h
2
w;xx

� �
þðλsþτsÞ v;yþ

1
2
w2

;y8
h
2
w;yy

� �
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Fig. 1. Schematic of a nanoplate-based NEMS: kinematic parameters, coordinate
system and geometry.
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