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a b s t r a c t

We study a special case of the three-body problem where two bodies are the same mass and there is a
manifold of symmetrical motions. We find conditions of existence of bounded symmetric motions. To
analyze stability, we substantially rely on the structure of the manifold of symmetric motions and use
integrals of energy and angular momentum.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When considering symmetrical motions in the three-body
problem, it is usual to refer to Sitnikov [1] who managed to prove
the existence of oscillating final evolutions in the case where two
bodies have equal mass. These are evolutions that exhibit sym-
metry. Although Sitnikov's statement was in truth proved rigor-
ously only for the restricted three-body problem, nevertheless it
was an impetus to further research in this direction, and even-
tually, it found its justification for the general three-body problem
under certain additional restrictions [2–4]. Note that the existence
of oscillating final evolutions in the three-body problem was
postulated by Chazy [5].

In our paper, we consider an “inverse” problem by exploring
conditions under which bounded symmetric motions exist.

As is shown in [6], the equations of motion for the three-body
problem (or three mass points) can be represented in the follow-
ing form:

ρ″1 ¼ μ2
ρ2�ρ1
jρ12j3

þμ3
ρ3�ρ1
jρ13j3

;

ρ″2 ¼ �μ1
ρ2�ρ1
jρ12j3

þμ3
ρ3�ρ2
jρ23j3

;

ρ″3 ¼ �μ1
ρ3�ρ1
jρ13j3

�μ2
ρ3�ρ2
jρ23j3

; ð1:1Þ

where the prime sign denotes the operation of differentiation with
respect to τ ðτ¼ t

ffiffiffiffiffiffiffiffi
GM

p
=r3=20 Þ, μi ¼mi=M,M ¼m1þm2þm3, and r0 is

a parameter with the unit-length dimension. In Eq. (1.1), ρi ¼ ri=r0,
where ri are radius vectors of points in the inertial reference
system with the origin at the center of mass mi. The variables
ρi ¼ ri=r0 are dimensionless since r0 has the dimension of the
length unit. In what follows, by considering the equations of
motion in the form (1.1), we obtain a possibility to use dimension-
less quantities; this is convenient for the subsequent transforma-
tions of the system.

In the sequel, we essentially use the fact that system (1.1) is
conservative, i.e., the integral of energy

1
2
∑
3

i
μiρ

02
i � ∑

io j

μiμj
jρijj

¼ h¼ const ð1:2Þ

does exist. We also use the vector integral of angular momentum

∑
3

i
μiðρi � ρ0iÞ ¼ C: ð1:3Þ

In addition, we assume that Ca0.
Subtracting the first equation of (1.1) from the second one and

taking into account the equality

∑
3

i
μiρi ¼ 0

that corresponds to the case where the origin of the reference
system coincides with the center of mass of material points under
consideration, provided that μ1 ¼ μ2 ¼ μ, we obtain the manifold of
symmetric motions

ρ″12 ¼ �2μ
ρ12

jρ12j3
�μ3

ρ12
jρ13j3

;
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ρ″3 ¼ � ρ3
jρ13j3

; ð1:4Þ

on which we have jρ13j ¼ jρ23j and the equality

ρ23 ¼ μ2ð�ρ212þ4ρ213Þ ð1:5Þ
is true. The latter is a special case of the following general equality

ρ23 ¼ �μ1μ2ρ
2
12þμ1ðμ1þμ2Þρ213þμ2ðμ1þμ2Þρ223 ð1:6Þ

derived in [8], where we found relations that reveal dependencies
between ρ2i and ρ2ij (i, j ¼ 1, 2, 3), and also ρ02i and ρ02ij , each taken
separately. It is easy to see that equality (1.5) can be obtained from
(1.6) by setting μ1 ¼ μ2 ¼ μ.

The manifold of symmetric motions is characterized by the
following equations:

ρ12 � ρ012 ¼ C1; ρ3 � ρ03 ¼ C2; ð1:7Þ
where C1 and C2 are constant vectors. This allows us to reduce the
system (1.4) qualitatively to a systemwith two degrees of freedom.
Indeed, multiplying Eq. (1.4) by 2ρ12 and 2ρ3 respectively, we
obtain

ρ212″¼ 2v212�
4μ
ρ12

�2μ3
ρ212
ρ313

;

ρ23″¼ 2v23�2
ρ23
ρ313

; ð1:8Þ

where v212 ¼ ρ0212, v
2
3 ¼ ρ023 . By observing that

ρ0212 ¼ ρ0212þ
jρ12 � ρ012j2

ρ212
; ð1:9Þ

ρ023 ¼ ρ023 þjρ3 � ρ03j2
ρ23

; ð1:10Þ

and using (1.7), we can represent Eq. (1.8) as follows:

ρ212″¼ 2
ðρ2012Þ2
4ρ212

þjC1j2
ρ212

 !
� 4μ
ρ12

�2μ3
ρ212
ρ313

;

ρ23″¼ 2
ðρ203 Þ2
4ρ23

þjC2j2
ρ23

 !
�2

ρ23
ρ313

: ð1:11Þ

If C2 ¼ 0, then system (1.11) admits a motion, for which the mass
point μ3 oscillates along the axis that passes through the center of
mass of the system and is orthogonal to the plane of motion of
other two mass points with equal masses. Namely for this case,
Sitnikov has succeeded to reveal the existence of final evolutions
[1] that oscillate around the stationary motion

ρ3 ¼ 0; ρ12 ¼
jC1j2

2ðμþ4μ3Þ
:

Definition 1. Following [7], we say that the pair of mass points
ðμ; μÞ of system (1.4) is Hill stable if the following inequality is
satisfied:

jρ12ðτÞjoc1 8τAR; 0oc1 ¼ const: ð1:12Þ

Definition 2. We say that a motion ρðτÞ ¼ ðρ1; ρ2; ρ3ÞT of system
(1.4) is distal if the following inequality is satisfied:

jρijðτÞjZc2 8τAR; 8 io j; 0oc2 ¼ const: ð1:13Þ

Assertion. Let ρðτÞ ¼ ðρ1; ρ2; ρ3ÞT be a symmetric motion of system
(1.4), which belongs to the set

Ω¼ ðρ; ρ0Þ : T�U ¼ ho0
� �

:

Then, in the case where jC1ja0, the motion is distal and the pair of
points ðμ; μÞ is Hill stable.

Proof. Since jC1ja0, jρ12j satisfies an inequality of the form (1.13).
According to (1.5), given that its left-hand side is nonnegative, we
obtain

�ρ212þ4ρ213Z0; ð1:14Þ
that allows us to conclude that the motion is distal.

Due to inequality (1.14), we have jρ13jZ jρ12j=2. Therefore, if we
assume that the pair of mass points ðμ; μÞ is not Hill stable, then all
three mutual distances jρijjði; j¼ 1;2;3Þ can be arbitrarily large.
However, given that the relevant symmetric motion belongs to the
set Ω, we obtain a contradiction, since at least one of the mutual
distances jρijj is always bounded on Ω at any time. Hence, we
conclude that the assertion is true.

The manifold of symmetric motions has the property that by
choosing initial conditions we can avoid not only triple collisions
of mass points, but also double ones. So, as a result, we can achieve
the distality. Unfortunately, it is not true in the general case, and
the problem of double collisions remains open. □

2. A theorem on boundedness of symmetric motions

In our study of boundedness for symmetric motions, we
represent the kinetic energy T both in the well-known form of
expression

T ¼ 1
2
ðμ1μ2ρ0212þμ1μ3ρ

02
13þμ2μ3ρ

02
23Þ; ð2:1Þ

and also in the form of the following expression [9]:

T ¼ 1
2

μ3
μ1þμ2

ρ023 þ μ1μ2
μ1þμ2

ρ0212

� �
: ð2:2Þ

Equality (2.2) and its analogues, which involve vectors ρ02, ρ
0
13

and ρ01, ρ
0
23 respectively, are obtained by the author [9]. These

equalities are expressions of kinetic energy represented in mod-
ified Jacobi coordinates. The modification in its essence consists in
considering a pair ðμi; μjÞ and the corresponding vector ρk ðka i; jÞ,
which outgoes from the center of mass of the system in the
direction of the mass μk ðk¼ 1;2;3Þ, instead of the vector R, which
outgoes from the center of mass of a fixed pair ðμ1; μ2Þ in the
direction of the mass μ3. Depending on the mass distribution in
the three-body problem and/or depending on which one of the
pairs ðμi; μjÞ is Hill stable, we can use any one of the completely
equivalent expressions of kinetic energy in order to obtain an
appropriate Lagrangian.

In the manifold of symmetric motions (1.4), these expressions
can be represented, respectively, as follows:

T ¼ 1
2
ðμ2ρ0212þ2μμ3ρ

02
13Þ; ð2:3Þ

T ¼ 1
2

μ3
2μ

ρ023 þ μ2

2μ
ρ0212

� �
; ð2:4Þ

and this allows us to obtain the following representations for the
energy integral:

ðμ2ρ0212þ2μμ3ρ
02
13Þ�

2μ2

ρ12
�4μμ3

ρ13
¼ 2h; ð2:5Þ

μ3
2μ

ρ023 þ μ2

2μ
ρ0212

� �
�2μ2

ρ12
�4μμ3

ρ13
¼ 2h: ð2:6Þ

By introducing notations

E12 ¼ ρ0212�
2
ρ12

; E13 ¼ ρ0213�
2
ρ13

; ð2:7Þ

where E12 and E13 denote the energy of pairs ðμ; μÞ and ðμ; μ3Þ
respectively, we can represent the energy integral (2.5) on the
manifold of symmetric motions as follows:
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