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a b s t r a c t

Experiments on cross-linked actin networks in form of a circular cylinder conducted with a rheometer
and parallel-plate geometry resemble a torsional problem of a cylinder undergoing large deformation.
A commonly used approximation for the analysis of such experiments is simple shear which is
inappropriate for the global analysis of the more complex 3D torsion deformation. We compare the
solutions of the torsion of a cylinder with simple shear on the basis of three (phenomenological) rubber
models and two network models for cross-linked actin. We start with rubber elasticity and show that the
approximation for materials with linear shear elasticity may be reasonable. In the case of cross-linked
actin networks, however, the strong strain-stiffening behavior causes higher deviations of simple shear
from the more realistic torsional mode. Furthermore, we show that the frequently used eight-chain
model cannot account for the correct normal stress behavior of cross-linked actin networks. A recently
proposed affine network model reproduces the correct sign for the normal stress for both versions of the
boundary conditions. The two solutions, however, differ significantly so that an approximation of the
deformation mode in a parallel-plate rheometer by simple shear should be used with caution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Rotational rheology with a parallel-plate geometry is the state-
of-the-art experimental method for the mechanical characterization
of materials such as (cross-linked) actin networks. The deformation
of the samples in such experiments resembles the torsion of a
cylinder. In several previous studies, however, simple shear was
used as an approximation for the real situation in parallel-plate
rheometry, see, e.g., [1–3]. One aim of the present study is to
analyze and quantify this commonly used approximation.

During experiments with a parallel-plate rheometer and plate
radius R the axial force ~N and the applied torsion couple ~M t are
recorded and transformed into a normal stress component ~σ and a
shear stress component ~τ , respectively. Thus [4],

~σ ¼
~N

πR2; ~τ ¼ 2 ~M t

πR3 ; ð1Þ

where the superimposed tilde is used to identify the values
obtained from experimental tests.

Torsion of a cylinder undergoing large deformations in the
context of rubber elasticity was solved in the seminal paper series

on ‘large elastic deformations of isotropic materials’ by Rivlin, see,
e.g., [5] and it was later discussed by Truesdell and Noll [6]. Torsion
couple and axial force for the well-known neo-Hookean and
Mooney–Rivlin models are also established in several text books,
see, e.g., [4]. Refined models for rubber, for example the Yeoh
model [7], may account for material non-linearities of rubber.

In the case of cross-linked actin networks we basically distin-
guish two modeling approaches. First, discrete models [8–12] are
used to investigate the mechanics of a network on the filament
scale. They are, however, expensive in terms of computational cost
and, therefore, in general, only simple shear of a representa-
tive volume is considered. The second modeling approach aims
for microstructurally motivated continuum models [1–3,13]. This
approach models the properties of a single actin filament first to
obtain a force–stretch relationship. Based on that, a network
model is then employed to homogenize the discrete microstruc-
ture. In our study the parameters of the resulting continuum
mechanical constitutive model are interpretable as the properties
of the single filaments and the network topology.

In the present study, we show that simple shear may be used
for certain types of material models to investigate the torsional
response. Furthermore, we show that by using an affine network
model for capturing the mechanical response of cross-linked actin
networks, we obtain a tensile normal stress (also for the simple
shear case) which is in accordance with, e.g., [14]. On the other

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.017
0020-7462/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: holzapfel@tugraz.at (G.A. Holzapfel).

International Journal of Non-Linear Mechanics 67 (2014) 300–307

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.017
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.017
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.09.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.09.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.09.017&domain=pdf
mailto:holzapfel@tugraz.at
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.017


hand, the eight-chain model is not able to generate tensile normal
stresses. Subsequently, we distinguish three types of notation:
(i) the tilde ( ~�) indicates rheological experiments with its mea-
sures as in (1), (ii) the hat (b�) characterizes values which are
related to simple shear, while (iii) no specific symbol refers to the
torsion of a cylinder.

Section 2 establishes the governing equations for the torsion of
a cylinder and conducts a comparison to simple shear. Subse-
quently, in Section 3, we apply the findings to material models for
rubber and define related error measures. In Section 4 we focus on
models for cross-linked actin networks. Specifically, we investigate
an eight-chain model and an affine constitutive model for cross-
linked F-actin networks. In the final Section 5 we provide a
discussion and conclude the study.

2. Analytical solution of the torsion of a cylinder

In this section we briefly review the necessary kinematics
required for the analysis of the torsion of a cylinder at finite
strains. We introduce the most general form of the stress relation
together with simple shear as a local approximation of simple
torsion. Subsequently, we specialize these relations to materials
which can be described in terms of strain invariants.

2.1. Non-linear continuum mechanics

Consider an incompressible circular cylinder with radius R and
height Z in cylindrical polar coordinates ðr;ϕ; zÞ, as depicted in
Fig. 1. A point in the reference and the current configuration are
characterized by the position vectors X and x, respectively. The
index zero is employed to note the coordinates in the reference
configuration, i.e. ðr0;ϕ0; z0Þ. Hence, we describe the deformation
through

r¼ r0; ϕ¼ ϕ0þkz0; z¼ z0; ð2Þ
where k is the twist, with the unit m�1. The angle Φ by which the
top surface is rotated with respect to the bottom surface is Φ¼ kZ.
Hence, the deformation gradient F is given in the matrix form as

½F� ¼
1 0 0
0 1 kr

0 0 1

2
64

3
75; ð3Þ

representing the linear transformation of a tangent vector dX
in the reference configuration to the current configuration dx,
i.e. dx¼ F dX. The first invariant I1 ¼ tr C of the right Cauchy–
Green tensor C¼ F>F is

I1 ¼ k2r2þ3: ð4Þ
Note that J ¼ det F¼ 1, characterizing a volume-preserving
deformation.

Assume now that the constitutive relation of the material can
be expressed by the strain–energy function Ψ ðCÞ in terms of the
right Cauchy–Green tensor. The Cauchy stress tensor σ is then
given as

σ ¼ σ�pI; ð5Þ
where σ ¼ 2Fð∂Ψ=∂CÞF> and p is a Lagrange multiplier associated
with the incompressibility constraint which can be interpreted as
a hydrostatic pressure. Assuming a static problem and neglecting
body forces, the key equation is then the equilibrium in the radial
direction, i.e.

dσrr
dr

þ1
r
ðσrr�σϕϕÞ ¼ 0: ð6Þ

The equations for the circumferential and the axial directions lead
to the conclusion that p does not change through the sample
thickness or in the circumferential direction, but only in the radial
direction. The radial normal stress σrr on the side surface of the
cylinder must vanish, leading to the boundary condition

σrr jr ¼ R ¼ 0: ð7Þ
Then, by using (5) in (6) and subsequent integration we obtain

p¼ σ rrþ
Z r

R
ðσ rr�σϕϕÞ

dr⋆

r⋆
ð8Þ

for the hydrostatic pressure. This equation combines the equili-
brium equation with the boundary condition, and hence all
components of (5) are determined.

When conducting an experiment, as illustrated in Fig. 1, we
rotate the top plate with respect to the bottom one by an angle Φ
while holding the distance Z between the plates constant. Simul-
taneously we measure the torsion couple Mt applied to the sample
and the required axial force N to keep the distance between the
plates constant. The axial force N is simply given by

N¼
Z
A
σzz dA; ð9Þ

where A is the top surface of the cylinder. The torsion couple Mt is
obtained by integration of the shear stress, which is the force per
deformed area, multiplied by the lever r, i.e.

Mt ¼
Z
A
rσϕz dA: ð10Þ

Note that for the cylinder dA¼ r dr dϕ, with ϕA ½0;2π� and rA ½0;R�.
A conversion to the equivalent stress components, analogous to
(1), may be applied. Thus

σ ¼ N

πR2; τ¼ 2Mt

πR3 ð11Þ

are the related normal stress and shear stress components,
respectively.

2.2. Simple shear as a local approximation

Simple shear may be seen as a local approximation of simple
torsion of a circular cylinder since the torsion deformation of the
3D surface of a cylinder can be reduced to a plane simple shear
deformation in the local neighborhood of a point. More precisely,
it is the solution at the outer surface r¼R of the cylinder.

Fig. 1. Cylinder under torsion (dimensions R and Z) with a cylindrical coordinate
system ðr;ϕ; zÞ. The components of the tangent vector dx associated with the
position vector xare dr, dϕ and dz. The dash-dotted lines on the cylinder in the
reference configuration deform to the dotted lines in the current configuration. The
angle of rotation is Φ¼ kZ, defined through the twist k. The gray areas schemati-
cally represent the distributions of shear stress σϕz and normal stress σzz over the
radius r.
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