
Author's Accepted Manuscript

On some performance characteristics of base excited vibration isolation systems with a purely nonlinear restoring force

Ivana Kovacic

www.elsevier.com/locate/nlm

PII: S0020-7462(14)00094-8

DOI: http://dx.doi.org/10.1016/j.ijnonlinmec.2014.04.010

Reference: NLM2299

To appear in: International Journal of Non-Linear Mechanics

Received date: 1 March 2014 Revised date: 22 April 2014 Accepted date: 24 April 2014

Cite this article as: Ivana Kovacic, On some performance characteristics of base excited vibration isolation systems with a purely nonlinear restoring force, *International Journal of Non-Linear Mechanics*, http://dx.doi.org/10.1016/j.ijnonlinmec.2014.04.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

On some performance characteristics of base excited vibration isolation systems with a purely nonlinear restoring force

Ivana Kovacic
Department of Mechanics
Faculty of Technical Sciences
University of Novi Sad
21215 Novi Sad
Serbia

Email: <u>ivanakov@uns.ac.rs</u>

ABSTRACT: Base excited vibration isolation systems with a purely nonlinear restoring force and a velocity *n*th power damper are considered. The restoring force has a single-term power form with the exponent that can be any nonnegative real number. Approximations for the steady-state response at the frequency of excitation are obtained by using the Jacobi elliptic function with a changeable elliptic parameter and by applying an elliptic averaging method. The relative and absolute displacement transmissibility of this system are analysed. These performance characteristics are expressed in terms of the damping parameters, but they are also determined for an arbitrary non-negative real power of geometric nonlinearity, which represent new and so far unknown results. Some examples illustrating the effect of the system parameters on these performance characteristics are also presented.

KEYWORDS: Base excited system; Power-form restoring force; Velocity *n*th power damper; Transmissibility; Jumps.

Download English Version:

https://daneshyari.com/en/article/7174607

Download Persian Version:

https://daneshyari.com/article/7174607

<u>Daneshyari.com</u>